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Scope of Report 

This Guideline identifies the requirements for emergency life support and medical treatment equipment 
for site use in supporting commercial diving operations.  

For those unfamiliar with this subject, a description of the typical environments is provided along with a 
summary of current problems in sourcing appropriate equipment that faces industry.  

In order to assist industry address the problems identified, this document aims to action the following 
objectives; 

1. To identify and to collate under a single document, all relevant current industry standards, testing 
and approval processes to; 

 Ensure that manufacturers of medical equipment can gain easier access to such information. 

 Enable them to understand the required testing processes and rationale behind processes. 

2. To identify and collate other existing literature and informal guidelines that may be useful so as to 
provide a degree of methodology and a recommended approach to the challenges in rendering 
medical equipment suitable and safe for use in a commercial diving hyperbaric environment. 

3. To identify the gaps between what is currently available and suggest a suitable means of 
addressing this. 

4. To make recommendations that will guide the next steps towards realising appropriate medical 
equipment that has been robustly tested and approved for use in commercial diving and associated 
pressurised environments. 

5. This document is neither a “standard” nor an audit tool. It is intended to provide guidance, 
applicable reference materials, and to educate the manufacturer and user as to hyperbaric-specific 
requirements. 

The document focuses on commercial diving applications but is equally applicable to other, similar working 
environments, such as in tunneling chambers – where hyperbaric work is also conducted, aerospace 
habitats, and any confined environment where similar restrictions, hazards and requirements are found.  

The terms diving or hyperbaric will be used to signify such environmental conditions. 

1 Background 

1.1 Commercial Diving Techniques 

The purpose of this section is to provide an overview for manufacturers and testing organisations that are 
unfamiliar with the commercial diving workplace. 

Commercial diving operations play an important role in supporting the construction, maintenance and 
repair of infrastructure wherever water is present, in particular in the offshore energy sector, water supply 
industry, ports and harbours.  

Whilst some shallow water diving is undertaken with techniques little different from simple recreational 
SCUBA diving, most commercial diving is undertaken with much more complex equipment in order to 
manage the risks that would otherwise arise from the types of water conditions, the nature of the work 
involved and the surrounding physical and industrial environment.  

A key feature of commercial diving is the connection of the diver to the surface with an ‘umbilical’ which 
supplies breathing gas, hot water (if needed), continuous communications to and from the diver's helmet, 
depth monitoring and supervision by a surface based Supervisor. The umbilical also supports rescue if 
needed.   

For all surface-orientated diving operations, local legislations / regulations and Industry Best Practices 
require an hyperbaric chamber to be immediately available on the vessel / worksite, for enabling 
immediate therapeutic recompression & decompression if needed. In certain risk assessed circumstances 
local regulation may allow a nominated Hyperbaric chamber to be within a certain time limit from the dive 
site, provided detailed plans are in place to cope with an emergency.  

In these operations, the diver is only placed in the decompression chamber if there is an emergency – 
usually the development of decompression illness.  
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In cases of severe decompression illness, the diver may require various medical interventions inside such 
a chamber for a number of hours, including intravenous fluids, urinary catheterisation, and in extreme 
cases, artificial ventilation. 

Another use for decompression chambers is to enable ‘surface decompression using oxygen’, a technique 
where a diver avoids a prolonged period of decompression in the water by relocating to the interior of a 
pressurized decompression chamber. The diver must omit several in-water stops that he should have 
performed during a standard in-water decompression, then exit the water and be successfully re-
compressed to depth in the chamber within a surface interval as brief as possible as there is a high risk of 
severe decompression sickness if there is any delay or failure in the surface decompression procedure.  

Surface decompression methods have been developed by the military diving teams for enabling them to 
bring the divers back on board the ships more quickly. In commercial diving. The benefit of surface 
decompression using oxygen is that prolonged decompression can occur in the dry and controlled 
environment of the decompression chamber, whenever the diving supervisor assesses that an in-water 
decompression could become unsafe because of adverse environmental conditions or emergency situation.   

Should any injury occur underwater, however, the management of that injury must take place inside the 
surface decompression chamber as it is highly dangerous to abort the scheduled decompression.  

The use of surface decompression has become more infrequent in the more highly regulated UK offshore 
energy sector in recent years but it is still used elsewhere in the world. The time a diver must spend 
undergoing surface decompression can range from minutes to hours in duration. 

Nitrogen becomes anesthetic / narcotic when its partial pressure increases. This effect starts at a depth 
around 30 msw. The UK Health & Safety Executive (HSE) limits exposure depth at 50 msw for diving 
operations using compressed air, and also exposure duration. (Reference: UK HSE Diving information Sheet 
No 5). 

So helium / oxygen mixtures (‘heliox’) are used, or much less frequently helium, nitrogen, oxygen (‘trimix’). 
These ‘mixed gases’ are supplied to the diver, via an umbilical, from cylinders or gas mixing systems.  

Decompression chambers are routinely used in this type of diving both for emergency treatment of 
decompression illness, and in some cases for surface decompression.  There are regulations surrounding 
these issues built on ‘lessons learned’ over many years.  

These are implemented / regulated in the UK by the HSE whilst other countries have their own similar 
Regulators in place. 

For extended intervention work below 50 metres depth, a more complex system of saturation diving is 
used as the shallow safe work durations available become insufficient for the tasks required.  

Saturation diving involves teams of divers living under pressure in an advanced version of a decompression 
chamber – a saturation diving complex made of a number of interlinked compartments in which there are 
provisions for sleeping, eating, hygiene and changing in and out of diving suits and helmets on the way to 
and from underwater work.  

These saturation chamber systems are usually located on barges, platforms or most commonly on ‘diving 
support vessels’. Transport of divers to and from the underwater worksite is provided by ‘transfer under 
pressure’ in a small submersible chamber often referred to as a ‘diving bell’ which is lowered to the 
appropriate depth at which the working divers exit into the water with a colleague remaining in the ‘bell’ 
to manage the divers umbilical and as a monitoring and rescue capability.  

Teams of divers live and work under pressure in these systems for periods of days to weeks at the end of 
which the safest decompression duration can range from as short as 2-3 days, up to some weeks for the 
deepest of dives.  

Exit from the saturation facility is not possible before safe decompression without the risk of severe or fatal 
decompression illness; such risk may be enhanced by illness or injury. Any injury or medical emergency 
occurring in saturation conditions must therefore, be managed in the existing saturation environment, until 
safe decompression is achieved. 

Saturation diving thus creates the highest demands for medical contingency planning and medical 
treatment equipment. The saturation dive environment is in many ways as remote or perhaps more so than 
that applying to astronauts in space. 

The inherent hazards & potential risks of the subsea hyperbaric environment, combined with the 
implicit trust which divers place in their surface teams; require that the prevention (primary, 



Emergency Life Support Equipment for Commercial Diving Operations 
 

 
 Page 6 of 47  
   

secondary and tertiary),  is designed in a more stringent way than the equivalent for workers who 
have to execute the same type of task in a normobaric environment. This is about due diligence and 
duty of care. These two essential principles justify the contents of this document its publication and 
its implementation across the Industry. 

In addition to the location and lack of ability to exit the system, the physical gas environment inside the 
saturation complex is of necessity at high pressure (4 – 30 ATA) predominantly constituted of helium with 
low levels of oxygen, almost always humid and of necessity very warm.  

There is a preference by many Operators and Contractors to use Saturation diving methods at depths 
shallower than 50.0 m for extended work.  

Experience shows it to be potentially safer, more efficient and cost effective than surface supplied diving in 
the depth ranges 30.0 m to 50.0 m.  

During the early pioneering years of saturation diving it was felt that this technique introduced long term 
health issues of working at significant depth for extended periods of time. 

However, medical research now suggests that the single blow-down and recompression back to surface in 
saturation diving  may be less severe on the human body than the frequent and repetitive pressurisations 
of surface supplied diving.  

As a contingency against fire or sinking of the host vessel or platform, it is now an expectation that there 
will be some form of ‘hyperbaric lifeboat’ in which saturation divers may be evacuated from the vessel or 
platform whilst remaining under pressure.  

In order to provide a planned destination for such evacuations, there are also now a number of ‘hyperbaric 
reception facilities’ (HRFs), or emergency saturation facilities at a safe location to which hyperbaric 
lifeboats could in principle be taken to allow divers under pressure to transfer to a safe and medically 
equipped facility.  

The hyperbaric lifeboats and certainly the HRF’s therefore require suitable medical care equipment. 

All of these conditions expose divers to a range of physical and physiological hazards inherent to 
underwater and pressurised environments as well as the risk of injury involved in the particular work that 
is being undertaken.  

These diving techniques are also used to a limited extent by military, emergency services and scientific 
agencies, whilst variations of these techniques may be used in pressurised tunneling work in wet or 
unstable ground. 

Employers are therefore required to put in place specialised medical support arrangements to cope with 
those potential injuries and medical illnesses that can and do occur in these special environments which 
are often, in addition, geographically remote.  

The most extreme challenges apply when emergency care must be provided in the saturation diving 
environment, requiring specially trained personnel and medical and communications equipment that will 
work in high pressure saturation diving chambers for many days.  

1.2 Problems with Medical Equipment for Diving Operations 

A guideline as to what medical support arrangements are considered appropriate for saturation diving is 
published by the Diving Medical Advisory Committee (DMAC) as DMAC 28.   

DMAC is supported by the International Marine Contractors Association (IMCA) who supply the Secretariat.   

DMAC 28 cross-references DMAC 15, a recommended medical equipment and drug list for the commercial 
diving industry.  

Although IMCA is an industry group, it is widely respected and utilised as source of guidance, especially for 
work in the offshore energy sector.  

DMAC 15 and 28 are therefore good guidance as to what is expected and seen as reasonable. Where national 
Regulations and codes exist and have requirements for medical support these are generally similar to the 
DMAC guidelines.  

Unfortunately, it is not at present, possible for all contractors to fully comply with these recommendations 
nor to provide optimal medical care in decompression or saturation chambers as a result of a series of inter-
acting factors. 
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Medical equipment items such as ventilators, monitors, suction and infusion devices that were chosen for 
use in saturation and surface supplied deck decompression chambers in the 1970s, were simple mechanical 
units, less affected by the humid, high pressure helium environments in saturation chambers or the 
potentially high oxygen partial pressures in the deck decompression chambers.   

Some items were informally tested and deemed safe to use as sold, whereas others needed modification or 
even custom manufacture. The resulting relatively crude equipment served its purpose in a manner 
consistent with healthcare expectations at the time.  

This legacy equipment has remained in use in the saturation diving field well past what would normally be 
considered its ‘use by date’. However, much of this equipment has now either failed or is failing, and is no 
longer able to be maintained or replaced with similar items.  

More modern monitoring, diagnostic and therapeutic equipment often have electronic, touch screen or 
battery technologies that are incompatible with pressure environments.  

Those items that might potentially be compatible have no certification for hyperbaric and/or saturation 
use, putting contractors and medical advisors in a difficult position regarding whether any specific item is 
suitable,  safe or legally appropriate. 

There are many commercial diving industry codes, standards and specifications which cover matters like 
pressurised gases, electrical or electronic systems, radio-frequency emissions, environmental robustness 
and the construction and fit-out of hyperbaric chambers.  

Medical authorities and regulatory agencies have a strong preference or in some cases legal requirements 
to only provide medical care with items of equipment that are registered as ‘approved Medical Devices’ by 
bodies such as the FDA in the USA, TGA in Australia or via CE marking in the EU.  

There are few specific guidelines within any of these schemes for diving industry hyperbaric use of medical 
devices.  

Medical equipment develops and changes on a constant basis. Older models are withdrawn and no longer 
supported, hence there is a need to renew or replace equipment on a regular basis, as is customary for the 
medical equipment field.  

There has been a concentration of ownership and increased internationalisation in the medical device 
marketplace resulting in larger companies that seem more risk-averse with respect to involvement in small 
market segments such as the hyperbaric sector.  

This problem applies equally to the hospital based hyperbaric medical sector, although there are some 
significant technical differences between the saturation diving and hyperbaric medicine fields, in addition 
to which, the diving medical equipment field is smaller. 

Overall, medical equipment manufacturers seem reluctant to make special efforts, presumably due to very 
limited potential sales volumes, the complexity of meeting the requirements of the arduous operating 
environment, the high costs of medical equipment certification and a general concern for product liability 
where used outside of the environment that they know and are comfortable with. 

In some cases, equipment has worked by trial and error, resulting in the equipment being put into use 
outside of its design environment presumably voiding product warranties, and possibly even affecting life 
insurance issues. 

Rigorous equipment assessment projects have been undertaken by some of the smaller life-support 
equipment manufacturers and by some operators.  

In some cases this knowledge has been disseminated into the medical literature, however often this is not 
the case and there is no easy way to access performance or safety testing information, or to evaluate how 
rigorous the assessment process has been. 

In other cases equipment has been modified without the original manufacturers’ involvement or even 
custom-manufactured and in such cases liability clearly passes to the parties who have undertaken the 
modifications, testing and therapeutic use of the item. 

The primary certification authorities for offshore, ship and marine applications are the marine 
classification societies, and these organisations have their rules for hyperbaric function, safety and 
maintenance compliance.  

However, these rules do not provide a specific certification avenue for medical devices. 
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The engineering standards and guidance documents for pressure vessels for human occupancy do in some 
cases include provisions applicable to medical equipment, especially when it is permanently installed or 
powered inside the chamber. 

1.3 Clinical Hyperbaric Medicine Equipment 

Hyperbaric oxygen therapy is increasingly utilised in mainstream medicine and many hospitals 
worldwide have hyperbaric chambers. Although hyperbaric chambers are conceptually similar to diving 
chambers in being ‘pressure vessels for human occupancy’, there are some significant differences.  

Hyperbaric chambers are designed for clinical use in healthcare facilities and operate at lower pressures 
than diving chambers – typically 2 – 3 ATA only.  

The requirement for medical equipment for this field is larger than applies for occupational diving, and 
significantly, the requirement is for routine use in a hospital environment, rather than as a rarely used 
contingency plan for (remote) emergencies.  

There are some medical devices that have been specifically approved for clinical hyperbaric chamber use 
via European and US approval avenues, although the applications are limited to a maximum of 6 ATA, or 
more often, only 3 ATA.  

Such equipment may be of ‘some use’ in the lower pressure chambers used as emergency support for 
onshore and surface supply diving, but equipment only tested to 3 ATA may not be suitable for use 
beyond that pressure and thus is limited in use, in practice.  

This pressure range is also significantly below the requirements for more complex commercial saturation 
diving which may involve pressures up to 30 ATA or more.  

It is important to note however, that some medical equipment is considered unsuitable for clinical 
hyperbaric chamber use on fire safety grounds based upon the concern that batteries or electrical 
components might initiate a fire in an oxygen-rich pressurised environment.  

Very conservative electronic and fire safety criteria are therefore utilised for clinical hyperbaric medical 
equipment and these criteria are almost certainly excessive for those deeper water saturation diving 
operations where 100% oxygen use is rare, and the chamber environment usually involves low 
percentages of oxygen.  

High percentages of oxygen are generally only used in a saturation diving situation for the treatment of 
suspected DCI at shallow depths. 

1.4 Prior Efforts to Improve Diving Medicine Equipment Availability 

In the past, the diving industry’s medical advisory body ‘DMAC’ tried to stimulate the industry into 
providing finance and impetus towards relevant equipment testing and certification for medical equipment 
for use in the diving environment.  

DMAC Guidance Note 28 is the current top level advisory document (available from the DMAC website:  
www.dmac-diving.org) and this was initially published in 1997 superseding prior documents.   

This document is limited to advising what sort of equipment and capabilities are needed without specifics 
as to suitable brands or types of equipment, nor the details necessary for testing and certification.  

This subject has been discussed over many years, with papers presented at industry meetings, but in 
general no significant progress has been made towards a suitable solution. 

A very small number of individual equipment item projects have been undertaken by medical, military and 
industry teams, in many cases proving that a desired equipment item did not work under high pressure. 

Meanwhile, the medical field has both expanded its capabilities as well as made progress in ensuring the 
availability of advanced care for injured workers in complex and remote environments, unfortunately the 
same advances have not been made with respect to having suitable equipment for the hyperbaric 
environment.  

Telemedicine in particular has made great strides with equipment and bandwidth availability that can now 
provide a shore-based medical consultant with first-hand, real-time encrypted patient information that can 
enhance treatment and intervention decisions and guide paramedics on scene.  



Emergency Life Support Equipment for Commercial Diving Operations 
 

 
 Page 9 of 47  
   

These technologies are now available for hyperbaric use but progress is restricted by the limited range of 
equipment suitable for the high pressure diving chamber environment. 

1.5 The Population at Risk 

Meanwhile, the average age of commercial divers has been increasing and this brings with it an increased 
risk of incidental medical problems occurring under pressure in addition to the risks of physical injury and 
pressure related pathology.  

It is not uncommon to find 50 - 60 year old saturation divers still in regular employment, working for up to 
a total of 6 months in the year within a saturation diving environment. 

Despite the medical screening requirements for all divers, provision for medical care needs to be made for 
both injuries as well as incidental medical issues. 

1.6 Next Steps 

For the diving industry to be able to comply with the medical intervention equipment requirements as 
suggested by DMAC 28 and DMAC 15, an appropriate testing and certification path needs to be developed 
and made available so that; 

• Manufacturers can be convinced to test and certify their existing equipment or even custom 
manufacture with proper guidance. However sales volumes will always be very limited, even without 
the excessive costs related to formal medical industry compliance.  

• Dive equipment owners and contractors will have the means to meet their client, regulatory and 
classification society requirements, knowing that their emergency medical equipment is tested and 
suitable for use under pressure.  

• They will also have the assurance that any interfaces with diving related pressure vessels and any other 
critical plant and equipment are safe and compliant.  

• Certification authorities have an independent, common template to guide their processes of review, 
surveillance and approval of equipment, and ensure that different authorities do not have different 
procedures and standards. 

• A guideline exists which allows inventors and innovative companies to understand the unique 
requirements posed by deeper pressure excursions, changed gas content and densities, humidity, 
electronic interference and confined space in sufficient detail that they can develop new hyperbaric 
medical technology with safety adequately addressed. 

The processes for developing an internationally implementable testing and certification guideline via 
existing medical device authorities or via existing Standards agencies such as ISO, CE etc. are too slow and 
uncertain to expect any useful outcome for many years. 

The various international and regional diving medical societies have discussed these problems continually 
with respect to medical hyperbaric chamber equipment without any real progress, this includes anything 
specific to commercial diving.  

The few military and civil agencies, companies and individuals with any real expertise (including those 
listed in this proposal) have made informal contacts and published academic papers on this subject without 
any consistency, formal linkages or usable outcomes for the medical device industry or for commercial 
diving operators.  

It is hoped, therefore, that this document will facilitate some progress. 

 

An illustration of the process of rendering the required equipment to determine suitability, safety, effective 
function and regulatory approval is shown in Appendix A. 
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1.7 Images 

 
 

A Surface Supplied Diver with helmet and 
dry suit. 

A basic mobile skid mounted twin lock Deck 
Decompression Chamber (DDC) 

 
 

A typical construction Diving Support 
Vessel (DSV) 

A portable Saturation Diving system in operation 

  

A Surface Supplied Diver about to be 
lowered into the water in a Launch And 

Recovery System (LARS) 

Saturation Divers at work. 
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2 Diving Chambers - The Physical Environment 

The environments relevant to this Report are most commonly found in the onshore and offshore 
commercial diving industry with a particular focus on diving in support of the oil and gas industry.  

Whilst emergency life support and medical care may be required in the relatively ‘normal’ outdoor 
industrial waterside environment of the dive site, the principal focus of this Report is on the various types 
of Pressure Vessels for Human Occupancy (PVHO) used in the commercial diving industry.  

PVHOs used in diving include:  

• surface supply diving deck decompression chambers (DDC) 

• mixed gas diving decompression chambers (Saturation Systems) 

• undersea habitats i.e. for hyperbaric welding 

• Submersible Decompression Chambers (Diving Bells) 

• hyperbaric lifeboats 

• hyperbaric reception facilities 

• transfer under pressure submarine rescue facilities 

 

Note: there are some semantics around the use of the terms ‘compression’,  ‘decompression’, ‘recompression’ 
or ‘hyperbaric’ when these terms are used to qualify the word ‘chamber’. Regardless of which term is used, the 
phrase refers to pressure vessels for human occupancy used in the diving industry and for the purposes of this 
document, these terms may be considered interchangeable. 

 

As a useful generalisation for targeting design of emergency medical equipment the most common diving 
industry PVHO types are; 

Deck Decompression Chambers (DDCs) which usually have a maximum operating pressure of 6 
ATA and a normal maximum occupancy duration of 5-8 hours.  

DDCs are usually comparatively stand-alone devices that are portable and sometimes 
containerised but in other cases are permanently installed on vessels or in buildings adjacent to 
major marine works locations.  

In order to operate they require supply with compressed air from cylinders or compressors (divers 
breathing gas quality) and medical quality oxygen. They are operated by a dive supervisor or 
appointed chamber operator. 

They have lights and heaters/coolers but availability of medical locks, internal scrubbers and 
sanitary facilities will very much depend upon contractor and location. 

Saturation Systems involving multiple connected chamber compartments in which divers live and 
work at operating pressures up to 30 ATA and in some cases significantly higher for periods of up 
to four weeks or more. 

Saturation systems usually involve more than one interconnected chamber and the ‘diving bell’ 
plus all of its handling equipment. These are much more complex and usually permanently or semi-
permanently installed on floating or fixed assets. 

There will be a formal diving safety management system for operations, with a minimum 24 hour 
manned level including separate diving supervisors and life support technicians who control and 
manage the ‘living chambers’.  

There is a complex infrastructure of gas supplies predominantly heliox, usually with gas 
reclamation and recycling, given the high cost and relative rarity of this gas.  

Saturation systems have internal environmental control including temperature and humidity 
management and carbon dioxide scrubbing.  

PVHOs are in themselves both life support devices and sources of significant worksite hazards. The key 
over-riding safety principle is that any medical device taken into the diving chamber must not increase risk 
or degrade the safety of the chamber.  

In addition the environment of the diving chamber must not degrade the safety of any medical device which 
needs to be used.  

Section 3 which follows, details the many abnormal physical environment parameters that are intrinsic to 
diving chambers and which need to be considered in assessing compatibility of medical devices for use 
inside such chambers. 
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2.1 Images 

 

 

 

Internal view of a saturation chamber’s “wet 
pot” for toileting and washing etc… 

Internal view of Saturation System living conditions. 

 
 

Submersible Decompression Chambers (Diving 
Bells) 

Hyperbaric Lifeboat Reception Facility (HRF) and 
Self Propelled Hyperbaric Lifeboat 

 

3 Operating Conditions for Equipment 

3.1 Introduction 

This section details the various physical and operating aspects of the commercial diving chamber 
environment with which any successful medical equipment item must be compatible.   

3.2 Physical Environmental Conditions 

3.2.1  Operating Pressure: 

Equipment required to operate inside diving pressure chambers needs to function at increased ambient 
pressure. This is the primary source of problems, challenges and limitations.   

Appendix B contains the needed conversion formula or tables in order to use either Imperial or SI units.  
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Note on units of measurement:  

Divers often refer to pressures in terms of the depth of sea water at which the pressure applies – 
metres depth sea water (MSW) or in some US influenced sectors, feet sea water (FSW). The acronym 
‘ATA’ is also often used, referring to Atmospheres Absolute, usually given to one decimal place, 
approximated by dividing the depth equivalent in MSW by 10 and adding 1.0 to make the 
measurement an ‘absolute’ pressure – the pressure in excess of a complete vacuum, rather than a 
‘gauge’ pressure which is the relative pressure in excess of the external ambient sea level pressure. 
The units used in this paper are thus either ATA to describe pressure or atm (atmosphere) to describe 
a gauge or rate-of-change pressure unit. 

 

For medical equipment to be useful in the PVHO environment, it needs to be tolerant of minimum ambient 
pressures as follows: 

(a) Hyperbaric medicine chambers and surface supply diving chambers when used only for emergency 
treatment of mild to moderate decompression sickness at least 2.8 ATA. 

(b) Unrestricted use in general (surface supply) diving support and emergency chambers as well as 
chambers used for surface decompression with oxygen at least 6 ATA. 

(c) Saturation diving chambers: 21 ATA will be adequate to make the equipment suitable for use in the 
bulk of saturation diving operations, but 31 ATA is preferred as this is the maximum pressure applicable to 
maximum anticipated depths of current and future diving projects. The deepest diving operations 
undertaken to date have involved 46-51ATA whilst the maximum human pressure exposures ever were 
undertaken in specialist environmental research facilities and these involved pressures up to 71 ATA. 

(d) Hyperbaric lifeboats and hyperbaric reception facilities – pressures of at least 21 ATA but preferably 
31 ATA as for saturation. 

Recommendation: Diving medical equipment should be functional at pressures of 6 ATA for surface 
supplied diving use, and 31 ATA for saturation diving. 

3.2.2 Pressure change rates 

In many cases, there will be limitations on the safe rate of pressure change for a particular item of medical 
equipment, usually because in-built venting of gaseous spaces is insufficient to cope with rapid 
compression or decompression.  

The pressure change tolerance of equipment needs to match the potential scenarios in which the 
equipment may be used, as described below; 

 

Equipment transfer or medical locks 

When equipment held externally to the diving chamber is required inside, it will usually be compressed 
fairly rapidly in a small ‘transfer-lock’ (also sometimes referred to as a ‘medical lock’ or the slightly larger 
‘equipment lock’) which is typically built into the side of habitable chambers.  

Such medical or equipment transfer compartments are intended to allow routine transfer of small items of 
food, drink, waste, medical or other equipment into or out of the living or working chamber in which a diver 
is pressurised.  

It is therefore highly desirable that items of medical equipment can be transferred via such medical or 
equipment transfer locks if needed, however it should be noted that the pressurisation rates involved can 
be very rapid as these transfer compartments are of small volume with only simple valving arrangements 
allowing limited control.  

In addition to the rate of pressure change, equipment will also be exposed to a short but often significant 
temperature rise as a consequence of the pressure rise going of the chamber.  

Similarly, there is a significant temperature drop with the potential for condensation and even ‘icing’ when 
items are transferred out of the chamber as a consequence of the pressure reduction.  

If equipment cannot cope with such rapid pressure and/or temperature changes, it will need to be clearly 
labelled with the maximum allowable pressure change rate so that the chamber operator can appropriately 
slow the pressure change by utilising one of the larger equipment locks. 

Alternatively items of equipment that are too large for transfer locks will inherently have to cope with the 
slower and more controlled pressurisation rates of chamber or transfer compartments designed for human 
occupancy. 
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Note, however, that equipment will not be required to be operating during compression or decompression 
in an equipment transfer lock. The equipment needs to be functional on arrival at the intended pressure 
when brought into the manned chamber.   

It is highly desirable however that equipment is capable of operating normally during slower compressions 
or decompressions in case a patient on life support needs compression or decompression. 

 

Pressurisation (compression) rates: 

(a)  Unmanned (equipment transfer or medical lock): 

DDCs: The pressurisation rate is often not controllable and items may be pressurised by 2.8 ATA in 5-10 
seconds – i.e. at rates up to 20 atm per minute. 

Saturation diving chambers: From a clinical care perspective, it will be impractical to wait more than 10 
minutes to get equipment down to the pressure of the diver.  The slowest useful pressurisation tolerance 
rate for medical equipment is thus probably around 3 - 5 atm/minute.  

As many equipment transfer locks can pressurise very quickly, much higher pressurisation tolerance is a 
safer option, given some uncontrolled pressurisations could occur at rates of 20 ATM per minute as for 
DDCs. 

In emergency medical situations, it is critical to get the equipment to the diver as quickly as possible. Very 
rapid pressure change will clearly affect most equipment, hence this characteristic needs to be determined 
and clearly documented for all equipment.  

Note that rapid pressure changes are associated with significant temperature changes – see subsequent 
section.  

Recommendation: Medical equipment should be tolerant of extremely high compression rates when in a non-
operating condition. 

(b) Manned Chambers: 

DDCs are typically pressured at 0.6 atm/min but some are capable of pressurisation at up to 1.8 
atm/min. 

Saturation chambers are of a larger volume and may be initially pressurised at rates as fast as 0.9 
- 1.8 atm/min but are subsequently pressurised much more slowly, to avoid undesirable 
physiological consequences for the divers. Final pressurisation rates to ‘storage depth’ can in some 
cases be as slow as approximately 0.015 atm/min or 1.0 atm/hour. 

Recommendation: Medical equipment should at a minimum be tolerant of 2 atm/min pressurisation and 
should be functional during such compressions.  

Depressurisation (decompression) rates 

(a) Unmanned (equipment transfer or medical lock): 

The potential maximum depressurisation rates possible vary with the engineering of each diving chamber 
and with the ‘depth’ to which the chamber is pressurised, as a rule, equipment is usually ‘locked out’ rapidly, 
implying depressurisation rates can be as high as 20 atm/min.  

In addition to the physical challenges created by such rapidly dropping pressure and thus expanding gas, 
significant cooling and condensing conditions will be created, albeit briefly. This is a major challenge for 
any item of electrical equipment or any equipment with gaseous spaces, even if it is electrically isolated 
during depressurisation.  

Although used equipment will usually be slowly depressurised with the injured or ill diver, it is possible 
that some items might need to be depressurised in the equipment transfer lock, for instance to allow 
recharging of a battery. 

Recommendation: Medical equipment should be tolerant of extremely high decompression rates when in a 
non-operating condition, from either saturation or compressed air environments.  

If an item of diving medical equipment is completely intolerant of very rapid depressurisation, the limitation 
on depressurisation applicable will need to be clearly stated by the manufacturer. 

 

(b) Manned Chambers: 

Occupied DDCs are typically decompressed at 0.03 atm/min when being used for therapeutic 
purposes during which time equipment could need to be operating. If medical equipment is held 
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in a chamber during normal diving operations, decompressions may occur much faster for example 
in a medical emergency, but rarely faster than 1 atm/min. 

In a saturation chamber, decompression typically proceeds very slowly. Current Industry advice 
suggests decompression rates in the range of only 0.09 to 0.18 atm/hour. (e.g. safe human 
decompression from 30 atm may take up to 14 days).  

Recommendation: It is important for medical equipment to continue to function and operate safely during 
and after manned emergency decompressions at rates up to 2atm/min.  

Recommendation: The function of the equipment should meet normal medical device specifications at 
decompression rates of up to 0.1atm/min. 

 
(c) Helium Venting: 

There is a particular problem associated with sealed gas spaces in equipment transferred out of a chamber 
after spending time at pressure in a helium environment. Helium is so diffusible that over time, it will 
penetrate most seals, and many container materials, including even thin glass.  

As a result, a ‘closed’ gas space intended to remain at surface pressure will accumulate helium and pressure 
within it. On decompression, this can result in the container ‘exploding’ or more usually venting via bursting 
of seals intended to resist external pressure, but not internal pressure.  

This phenomenon commonly affects ‘waterproof’ and ‘pressure resistant’ items like diver’s watches and 
the solution is to build in a helium vent valve that will allow internal gas to vent during decompression. 

Recommendation: Any item of equipment intended for use in a saturation chamber environment shall be 
assessed and approved for helium venting – including practical testing involving time at pressure, followed by 
decompression and then inspection for dysfunction or damage. Although devices at risk of helium 
decompression damage could be designated as ‘single use’, this is obviously undesirable and unsustainable.  

3.3 The Ambient Gas Environment  

It is normally assumed that the ambient gas environment in which medical equipment will be used is 
normobaric atmospheric air, although in some cases, tolerance or intolerance of anaesthetic gases and/or 
explosive vapours may be listed.  

For diving medicine use, it is necessary for equipment to tolerate gaseous environments which can be very 
different from the usual situations of natural air at between sea level and modest altitudes. 

3.3.1 Oxygen Levels in DDCs: 

DDCs are pressurised and ventilated with compressed atmospheric air. Whilst air normally contains 
around 21% oxygen, 79% nitrogen and only traces of other gases, the air inside an occupied PVHO can be 
enriched by extra oxygen.  

Within the chamber, divers use masks to breath 100% oxygen or other gas mixtures, to support 
decompression or as a treatment mix for decompression sickness. If a diver is unconscious and not 
breathing, the resuscitator or ventilator in use will be required to deliver the same high oxygen content 
breathing gas (treatment mix).  

The exhaust of such oxygen breathing systems should be vented to the exterior of the chamber and open 
air/upper deck so that it does not excessively enrich the interior ambient atmosphere, raising the fire and 
oxygen toxicity risk. Some leakage from breathing gas systems often occurs but normal chamber operating 
procedures should keep ambient oxygen levels from exceeding 23.5%.   

Chamber interior levels of 25% are not unknown however, and any medical equipment that may be used 
near to where oxygen is being delivered to a diver may be exposed to local pockets of more oxygen-enriched 
gas. This is a significant fire risk. It is thus critical that equipment does not have operating temperatures, 
failure modes or have potential ignition sources that could trigger fire in an oxygen-enriched environment.  

 
Recommendation: Diving medical equipment must be safe for normal use in pressurised environments 
containing 25% oxygen and it is highly desirable that the equipment does not present a safety hazard if 
accidentally exposed to higher concentrations of oxygen, including up to 100% oxygen at ambient pressures 
below 2 atm.  
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3.3.2 Diving Air Quality: 

The air supply to chambers should be of the same quality as that breathed by divers and should always be 
well filtered, clean, dry and analysed. The specifications for the quality and testing of divers' air vary slightly 
between various jurisdictions but all require very low levels of carbon monoxide, oil and water vapour and 
other contaminants.  

As oil lubricated compressors are still used, it is possible for there to be some contamination of the 
environment, although normal filtering and air testing procedures should minimise this.   

Whenever a chamber is occupied, there will be some elevation of carbon dioxide levels as a result of the 
occupants’ exhaled breath which will be higher if the chamber is inadequately ventilated / flushed through.  

In most cases the air inside diving chambers also becomes quite humid due to exhaled breath, evaporation 
of wet equipment and / or perspiration. 

3.3.3 The Saturation Chamber Gas Environment 

When saturation chambers are pressurised, the initial pressure increment is often achieved with 
compressed air, resulting in there being some nitrogen present in the final mix within the chamber.  

The bulk of the gas used however is helium, so that the final gas mixture is predominantly helium, 
sometimes with a small amount of nitrogen and always with a proportion of oxygen that is controlled to 
levels that are physiologically safe for the diver living at pressure.  

This requires the oxygen level to be maintained at a partial pressure above that applying in a normal 
atmosphere (0.2 ATA), but below the level at which oxygen becomes toxic to the lungs (around 0.5 ATA). 

The partial pressure chosen is usually around 0.4 atm, which can be achieved by breathing 40% oxygen at 
the surface, or, as an example, by breathing 4% oxygen in a saturation chamber environment at 9 atm 
pressure (10 ATA) as saturation techniques are usually used for depths in excess of 40 MSW, oxygen levels 
inside saturation chambers are virtually always below 10%, except in the final hours of decompression. 

As helium is a rare and expensive gas, saturation diving systems always use closed or near closed circuit 
environmental control systems which recirculate the heliox environment with chemical ‘scrubbers’ to 
absorb carbon dioxide and filters or absorbents to capture other contaminants. Oxygen is added as needed 
to replace the metabolic oxygen consumed by the chamber occupants.  

Equipment for use in saturation systems will thus be required to operate in a helium rich environment that 
can come close to pure helium at higher pressures/deeper depths.  

The oxygen levels will usually be well below those applying at atmospheric pressure, and fire risk is 
therefore usually diminished.  

Recommendation: It is desirable for saturation diving medical equipment to also be safe to use in the 
oxygen rich treatment environments that can be present in DDCs and during the final lower pressure phases 
of saturation decompression. 

3.3.4 Saturation Diving Gas Contaminants 

The saturation diving chamber environment will always have a somewhat raised carbon dioxide (CO2) level 
as a result of CO2 exhaled by the occupants. This is usually maintained at 500ppm or less (0.05%) but can 
climb higher than this during emergency situations with compartment crowding or sub-systems failures. 

The saturation diving environment is a closed living space where food, waste and body odours are normal. 
In contaminated waters, divers returning to the saturation living chambers may introduce contaminants 
on their equipment such as hydrocarbons, although significant effort goes into minimising this risk. 

Contaminants may also be introduced as a result of the off-gassing of materials introduced into the 
chamber. Gases and vapours may result from the exposure of materials to elevated operating pressures, 
temperatures and oxygen enriched environments.  

Recommendation: Verification of all new materials prior to introduction into the chamber should be carried 
out in accordance with an accepted technique, valid for the offshore environment. 

3.4 Breathing Gas Delivered by Masks or Ventilators 

Saturation divers working at the deepest depths may require as little as 1% oxygen in the breathing gas 
within their living chambers and the gas delivered to their diving helmets.  
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When a diver in saturation needs treatment for illness or injury, or if more rapid decompression is 
indicated, the diver may be directed to breath a gas mixture with a higher partial pressure - potentially up 
to a partial pressure of 2.8 ATA or rarely a little more.  

The therapeutic breathing gas in these situations is delivered through a demand mask, hood tent or for an 
unconscious non-breathing diver (patient) a ventilator, and the proportion of oxygen needs to be controlled 
accurately to ensure the right partial pressure is achieved for the particular ambient chamber pressure 
involved.  

Oxygen is usually 5-100% of such therapeutic gas mixes, with the balance being helium. This is usually 
achieved in practice by external life support technicians supplying the required mixture to a gas connection 
point inside the chamber, with no gas blending or mixture control occurring within the respiratory devices 
inside the chamber.  

For medical ventilators, any gas mix is likely to be selected from the appropriate theraeutic mixes available. 

Further consideration of these issues is included in the relevant equipment specific sections that follow.  

As a result of the above considerations, it could be concluded that it might be acceptable for saturation 
diving emergency resuscitation devices to be designed for 21% oxygen and lower only, whilst therapeutic 
respiratory devices for general saturation diving use would only need to deliver 50% oxygen or less. 

This would be valid only if the equipment was not intended to also be of use in other types of diving 
chambers.  

From a fire safety point of view, in most cases the potential for exposure to an oxygen enriched environment 
of >23.5% oxygen is unlikely.  

This is undesirable however as any such equipment with limited oxygen tolerance would need prominent 
warning labels and systems preventing connection or use in high oxygen environments.  

As saturation diving systems are often co-located with one or more surface supplied DDCs, it will be safer 
and generally preferable if equipment can be oxygen safe and tolerant. 

For apparatus specifically designed to deliver breathing gas – i.e. masks, hoods and ventilators – these 
should definitely be safely capable of delivering up to 100% oxygen as the breathing gas as this may be 
required during the final stages of emergency decompressions. 

A specific example of a fire safety issue is the presence of Quarter turn valves. Quarter turn valves have 
been identified as being responsible for the causation of fires in lines / pipe work carrying hyperbaric 
oxygen in the past. These Quarter turn valves have now been universally replaced by needle valves which 
control acceleration of gases when opened more efficiently.  

Any device intended to be  used in saturation, will be used through-out the decompression stages. 

Recommendation:  Medical equipment specifically designed to deliver breathing gas should be capable of 
delivering 100% oxygen.  (This does not include the existing divers breathing apparatus already 
installed in the chambers.) 

3.5 Other Atmospheric Environmental Considerations 

(a) Temperature  

Diving equipment is often stored in a non air-conditioned environment and can thus be exposed to the full 
range of environmental temperatures. Surface supplied DDCs may not always have heating or cooling 
equipment and will operate at close to the environmental temperature.  

During rapid pressure changes, temperature will rise during pressurisation and fall with depressurisation. 
This is most notable in air chambers and in medical/equipment transfer locks where pressure changes 
more rapidly. 

Due to the very high thermal conductivity of helium at pressure, the saturation diving chamber 
environment must be actively maintained by environmental conditioning systems to within a small, 
relatively warm range in order to prevent divers being endangered by hypothermia or excessive heat 
stress. 

Saturation chambers are generally maintained at 29° - 34°C at operating pressure, reducing to 
21°C ± 2°C during the final stages of decompression.  

During equipment pressurization in the medical/equipment transfer lock, temperatures 
commonly reach 50°C and can rise higher – although not usually beyond 60°C. 

During equipment depressurization in the medical/equipment transfer lock, temperature will fall 
to near freezing point and in extreme cases, sub-freezing temperatures may occur briefly. 
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Note: Significant temperature variations that can occur in medical/equipment transfer locks are for relatively 
short periods only and the equipment will not be required to be operational during transfer.  

Note: As the temperature change occurs as a result of pressure change, the thermal load is generated by the 
compartment gas itself, and thus occurs within gas containing equipment as well as external to the equipment.  

As the thermal capacity of gas is low compared with the steel walls of the medical/equipment transfer lock 
and potentially of the equipment item components, the rise or fall of the gas temperature due to pressure 
change is rapidly modulated back towards the starting temperature of the equipment and the lock. 

There are also many diving operations taking place in tropical and arctic conditions making the transport 
of medical equipment to and from the dive site and its storage a potential challenge which needs to be 
accounted for. 

Additionally should the medical equipment be deployed in the event of an SPHL and / or an HRC launch, it 
may be exposed to raised levels of temperature and humidity for considerable periods 

Recommendation: Equipment for diving use should have an operating temperature range of 0 – 50°C as this 
is a common temperature design range for diving chambers. 

Recommendation: Equipment for diving use should have non-operating tolerances of below freezing 
conditions and of temperatures in excess of 60°C when being stored, transported to and from the diving site or 
passed into or out of chambers via equipment transfer locks. 

Recommendation: Equipment for use in Arctic conditions should be specifically designed and rated for such 
use. 

(b) Humidity  

DDCs will commence pressurisation with ambient air humidity but are then usually fairly dry initially, as 
almost moisture-free compressed air is used to initially pressurise. With occupancy, humidity can rise 
significantly as a result of exhaled breath humidity and evaporation from wet diver equipment and bodies.  

When air chambers are being used for therapeutic decompression, relative humidity is usually between 
20-50% 

Saturation diving chambers  

(1) Normally controlled in the range 30 – 80% RH. 

(2) Ideally maintained in the range 50 – 70%RH. 

(3) May be close to zero during pressurization and close to 100% in extreme cases. 

Recommendation: Equipment for diving use should as a minimum be tolerant of operating in humidities 
between 0 and 100%. Equipment should be tolerant of exposures to near 100% Relative Humidity (RH) when 
not operating, and should ideally be tolerant of brief exposures to condensing atmospheres in case the item is 
depressurised rapidly. 

3.6 Operational Considerations 

(a) Ship-board operating environment 

Diving operations are commonly conducted from ‘diving support vessels’ and other seagoing mobile units. 
Equipment must therefore be capable of operating normally during the movement involved.  

The vessel accelerations due to heave, pitch, yaw and roll, require that simultaneous dynamic acceleration 
loads of 1G should be allowed for in each direction. 

The vertical static (gravitational) acceleration of 1 G must be added to the vertical load, implying that a 
minimum worst case scenario of 2 G vertical, 1 G transverse and 1 G longitudinal be used in load 
computations. 

Clients might specify higher loading due to expected sea state, but as a general rule, portable equipment is 
required to meet the above simultaneous conditions.  

Permanently installed equipment may also allow the consideration of reduced loads. 

(b) Manual handling and drop testing 

The operating environment is much less controlled than any normal clinical environment, however it is 
difficult to provide specific parameters as chambers vary greatly in size and ergonomics.   
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Equipment will be moved often and must be robust enough for transport in off-road vehicles, helicopters, 
light aircraft as well as small and large vessels at sea.  

If equipment has robustness and packaging suitable for helicopter or land-based rescue service or for use 
in a military operating environment, then it should be suitable for diving operations. 

(c) Availability of electrical power 

Medical or multi-purpose electrical power outlets are not generally available inside hyperbaric chambers 
with most electrical power specifically installed to supply a particular piece of equipment. Such power 
supplies will most commonly be 12 or 24 volt DC, ungrounded, with dedicated waterproof wiring and 
connectors.  

Saturation diving chambers usually have individual ‘bunk lights’ in the sleeping compartments and in some 
cases these have been modified to allow connection of other low voltage, low power equipment such as 
personal electronic communications, music or games technology. 

This document calls for operators of diving chambers to make available 12 volt electrical power for medical 
equipment but at present, this may not be universally available. When low voltage power is considered 
there will be a need for more widely accepted standards for voltage range and stability, amperage and 
connector types in the wiring rules and safety systems followed.  

It will be preferable at this stage, therefore, that equipment has the option of being self-contained and 
where necessary, battery powered with hyperbaric-compatible batteries. 

In order to enable suitable functional duration, devices will need to have changeable batteries or the ability 
to connect external power, noting that this is subject to the safety considerations around electrical and 
electronic devices discussed in greater detail in Section 4. 

The availability of electrical power external to the chamber will vary with the host vessel or worksite and 
if AC power is required for charging batteries then allowance should be made for the full range of options 
found internationally, from 100 – 250 volt, 50 or 60 Hz. 

(d) Illumination  

Lighting is often poor by clinical standards and any control panels and displays should be legible in poor 
light or preferably be illuminated. 

(e) Water, dust and contaminants 

Delicate or sensitive equipment items should have storage containers that protect the equipment from 
contamination or damage during storage and transport.  

During emergency use inside chambers and around dive sites, equipment may be operated by persons with 
wet hands and clothes.  

There may be other contaminants present, so it is therefore highly desirable that the exterior of equipment 
is tolerant of contamination with water, dirt and grease, and easily cleanable. 

 

Note: It is important that any manufacturer considers carefully the potential application, operational 

requirements, and use of their individual equipment.  Each of the requirements mentioned above may 

or may not be applicable to a specific piece of equipment, depending on the nature of the equipment or 

the expected operating conditions.  

For example, relatively inexpensive and simple items of medical equipment such as a thermometer, 

might remain in an occupied saturation chamber throughout the compression, working and then the 

decompression phases of the ‘dive’ and hence would never require to be compressed or decompressed 

faster than the occupants. Some items of emergency equipment might need to be compressed quickly in 

an emergency e.g. a defibrillator, whereas others might be only used when compressed with a medical 

attendant. 

Manufacturers should also ensure there are clear markings on the equipment outlining what conditions 

it has been tested as safe and functional in.  
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3.7 Images 

 

  

Telemedic sensors attached to patient and to 
transmitter. Well Enhancer DMAC 28 drills 

HRF chamber set up for the care of the 
injured diver in Baku 

  

Signals from patient sensors transmitted to outside 
via bulkhead penetrator. Well Enhancer DMAC 28 

drills 

Inside the BP Baku HRF saturation control 
cabin with the Supervisor communicating 

with and watching the divers inside the HRF. 

  

A penlon ventilator and hyperbaric syringe pumps. 
Inside the BP Baku HRF 

A Diver working in Arctic conditions 
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4  Medical Equipment Requirements 

4.1 Introduction 

Safe commercial diving operations require contingency arrangements for the management of any trauma 
or medical emergencies that may occur in the diving workplace – an environment that can be very remote, 
both physically and as a result of the multi-day decompression requirements for saturation diving.  

Diving contractors therefore employ diving medical technicians (DMT’s) who are Divers that have been 
trained to meet the challenges of providing care inside the pressurised and confined environment of 
decompression chambers.  

Professional medical advisory and support services are provided by a very small number of sub-specialist 
diving medicine advisors with expertise in the physiology and practicalities of the commercial diving 
industry and saturation diving in particular.  

When emergencies do occur, there are a very limited number of emergency medical teams with the skills 
and resources to respond either by delivering remote support telephonically or by deploying into the field.  

Any of these medical and paramedical personnel who may have to manage medical emergencies require 
appropriate healthcare equipment and this may be variously held by industry at dive sites and at the 
hospitals and private bases from which medical teams may respond.  

Medical equipment required to support saturation diving operations includes items that form part of the 
emergency kit for the dive bell, the medical kit available on site for use in the saturation chambers, specialist 
medical items that might be brought to the site by an emergency medical response team, and items for use 
during transfer or transport. 

The scope of equipment encompasses everything needed to look after an ill or injured diver for a period of 
at least 3 days and potentially up to a week or more, as necessitated by the decompression times associated 
with the depth of dive operations.  

The range of equipment categories includes basic health and hygiene care items, nursing care requisites, 
first aid, minor surgery, critical care and monitoring equipment, diagnostic items plus IT, telemetry and 
communications equipment.  

The Diving Medical Advisory Committee (DMAC) publish guidelines covering various medical aspects of 
diving operations, including DMAC 28 and DMAC 15. These are published on their website:  

www.dmac-diving.org  

 

The equipment listed in DMAC 15 – Medical Equipment to be Held at the Site of an Offshore Diving 
Operation, presents only a few problems as this Guideline lists the drugs and advanced first aid supplies, 
most of which are compatible with use under pressure in the diving chamber. 

One problematic item is the Self Inflating Bag Resuscitator. Standard models of this common item of 
advanced first aid equipment cannot be assumed to work at extreme pressures – experience has shown 
that the elastic recoil of some bags may be insufficient for it to refill properly. 

In addition, the resuscitator must be supplied with gas via an adapter to a divers Built-in Breathing System 
(BIBS) mask or from a dedicated regulator.  

The unit also requires (ideally) exhaust gas capture and connections to dump this to the exterior of the 
chamber. There are thought to be many resuscitators in the field that have not been tested at pressure and 
which might fail to work in an emergency. 

DMAC 28, ‘The provision of emergency medical care for divers in saturation’, provides an overview of the 
higher level care systems that are required to support commercial diving operations.  

This includes adequate equipment for a DMT or a doctor to provide makeshift but functional critical care 
for several days whilst decompression is affected. The most problematic items where deficiencies exist in 
the availability or suitability of medical equipment are identified in 4.1.1. 

4.1.1 Intravenous infusion pumps 

These are required to control the flow of intravenous fluids and/or drugs into the patient. A number of 
syringe drivers exist which have battery power and which appear to work under pressure. Few, if any, have 
been formally tested to saturation diving pressures. For multi-day operations, a system to enable extended 
duration operation is essential as most devices have battery run times of a few hours only at best.  

http://www.dmac-diving.org/
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It is not ideal to pass infusion pumps in and out of the chamber repetitively for charging, as this can risk 
damaging the device requiring frequent change of pump, resulting in discontinuity of drug delivery and the 
risk of error.  

Options include the availability of external hard wired power, ‘hot swappable’ batteries or extension 
battery packs but each of these has particular safety and practicality issues that are discussed in more detail 
in the following Section.  

4.1.2 Ventilators 

This is the most critical deficiency at present for use by diving medical physicians. It is very challenging to 
make any ventilator work under pressure but the industry has, in the past, had access to one very simple, 
robust, volume cycle ventilator that has a proven track record at pressure – the ‘Oxford Penlon’.  

This has not been manufactured for many years, but the Penlon Company is understood to still have the 
design documents and modern manufacturing techniques may enable a small production run to be possible 
if there are sufficient guaranteed sales or a specific grant.  

There are few alternatives, although another legacy ventilator, the Manley, is also pressure compatible.  

It is not in principle impossible to design and manufacture a new ventilator for the saturation diving 
pressure range, but it is unlikely that any existing modern ventilator design will be adaptable – almost 
certainly a new design will be needed. 

4.1.3 Electrophysiological monitoring equipment 

(ECG, Blood Pressure, Oxygen Saturation, End tidal carbon dioxide) 

There are a number of portable multi-parameter medical monitoring systems that may be pressure 
compatible, however information is scant regarding testing results.  

There is a need for detailed testing and promulgation of the details of those systems that are most suitable.  

These should ideally be equipped with Wi-Fi, Bluetooth or an alternative wireless data-out capacity, so that 
the monitored waveforms and parameters can be also seen by external personnel on a slave monitor or 
preferably a computer, from which the data could be re-transmitted to a remote medical facility. 

4.1.4 Telemetry for above 

Telemetry systems are required to relay medical data to remote medical personnel in a secure and reliable 
fashion.  

There are a number of commercial solutions for this but the offshore commercial diving industry should 
consider standardising on one or a small number of preferred systems, to ensure the widest usability.  

This technology is not necessarily diving specific and suitable systems should be able to be sourced from 
the wider telemedicine technology field, although the inputs from inside the chamber will need to be from 
pressure compatible devices with data transmission systems that work through the chamber pressure 
boundary (wired or wireless). 

4.1.5 Audio-visual communications from chamber interior to remote support 

(Including consumer electronics such as Skype via tablet devices) 

As for telemetry above, audio-visual linkage is critical. Most emergencies managed in saturation diving 
chambers to date have had to rely on relayed audio communication only, often with many intermediaries.  

Modern video-conferencing solutions offer much improved supervision and direction of care but the 
devices to be taken into the chamber need formal testing. This should include the consumer tablets that are 
not infrequently taken into chambers.  

A good head-mounted camera for the DMT would be a great advantage. The ideal system should have multi-
channel feeds from the site of the emergency – perhaps a general view inside the chamber as well as a head 
mounted camera with an external camera for support personnel to appear on the conference feed. 

4.1.6 Semi-automatic defibrillators 

With an ageing diver workforce, it would be preferable to have a pressure tolerant semi-automatic or fully 
automatic defibrillator available. Most standard models tested to date do not function at higher pressures. 
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This piece of equipment is required by both DMAC 28 and DMAC 15. Defibrillation capability can be 
provided by a through-hull electrical penetrator selected and wired to connect an external defibrillator 
with internal defibrillation pads.  

As such wiring would ideally be needed in all chamber compartments and is rarely installed at present. It 
would be preferable for there to be development of self-contained pressure tolerant defibrillators. 

4.1.7 Portable ultrasound equipment 

The diagnosis of many emergency conditions can be greatly assisted by portable ultrasound. Some tests 
have apparently been successful in clinical hyperbaric chambers at low pressures. This work needs 
extending to include saturation dive pressures/depths. 

4.1.8 Blood glucose monitoring equipment 

The accurate measurement of blood glucose is potentially important in an aging diving population that 
spends many months in saturation should they develop any unexplained illnesses. 

4.1.9 Suction systems 

DMAC 28 specifies foot power suction, these such units are readily available and alternatives are possible. 
Suction systems can be installed, with suitable back pressure regulation and it would theoretically be 
possible to use BIBS overboard dump connectors to operate a suction unit.  

If suitable battery powered units were available, these could provide a very functional and flexible 
alternative. 

4.1.10 Intra-osseous infusion insertion systems 

Spring loaded and manual systems are hyperbaric compatible however it is possible that a battery powered 
drill type system could also be made hyperbaric compatible. 

4.1.11 Stethoscope  

Traditional stethoscopes function poorly under pressure. A suitable electronic unit would be ideal but 
would require digital signal processing to correct for the altered acoustics in heliox at pressure. 

4.1.12 Portable lighting 

Modern battery powered LED lights are improving and units designed for camping and emergency lighting 
will probably be suitable. Magnet mounts are useful for chamber internals. 

4.1.13 Humidifier 

Simple heat exchange humidity retention systems may be used but can increase work of breathing at higher 
pressures. 

It would be useful to be able to use humidification that did not create breathing resistance, perhaps using 
ultrasonic nebulisation. 

4.1.14 Nebuliser 

Nebulisers for aerosolised drugs for bronchoconstriction need testing at pressure. 

4.1.15 X-ray equipment 

In the past, lightweight, portable capacitor discharge X-Ray units have been available to take to the dive 
chamber site enabling an X-Ray to be taken through a porthole and then sent for processing.  

With most radiology now digital capacitor discharge portable X-Ray units are no longer approved for 
human use, there is a need to identify suitable units to replace them.  

These do not necessarily need to be pressure compatible and military and disaster team technology may 
be able to be used. 
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4.1.16 Volumeter / Flowmeter 

The adequacy of artificial ventilation at pressure should be monitored by both End Tidal CO2 and by 
measuring the volumes delivered either as breath by breath volumes, minute volume, or ideally flow/time 
volume measurement capable of displaying as real time waveforms and measurements. To date, simple 
volumeters only have been available.  

The confirmed falling price of ultrasonic flow measurement and pressure sensors should enable a more 
advanced solution.  

This would greatly enhance quality of ventilation and patient outcomes, given that seems likely that the 
ventilators themselves will probably remain crude for the foreseeable future.  

Any electronic volumeter should ideally have data out capability to enable the ventilation data to be 
transmitted via the medical telemetry system. 

4.1.17 Video otoscope 

Ear problems are common and diagnosis would be easier with video out otoscopy. This is commercially 
available for normal clinical use but would require testing and perhaps modification for chamber use. 

4.1.18 Decision support aides  

(Paper or electronic guidelines for when communications with remote support is limited or absent) 

There are some very simple guidelines on medical emergency management in diving texts and diving 
manuals.  

Advanced computer based systems are under development for military, remote area and space travel use.  

It would be useful to have such aids developed for the diving specific environment and conditions needing 
remote treatment. 
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4.2 Images 

 

  

A Defibrillator undergoing hyperbaric testing. Defibrillator testing equipement. 

 

 

AED External chamber connections for testing A test chamber in closed and clamped condition 

 

5 Electrical and Electronic Issues 

5.1 Introduction 

Many items of modern medical and telecommunications equipment are electrically powered and/or 
electronically controlled.  

This section aims to introduce the newcomer to this field to some of the specific issues that arise when 
electrically powered devices enter the pressurised diving chamber environment.  
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Electrical and electronic medical devices involve the most complex regulatory and standards issues. This 
section addresses general principles without reference to specific regulations and standards.  

Most of these regulatory and required documents assume sea level pressure operation and do not have 
provisions for operation at pressure which can create a compliance problem if compliance with a particular 
requirement is in conflict with what is needed to allow function under pressure. 

There are some documents that have been prepared with provisions for pressurised operations but most 
of these related to low pressure medical hyperbaric chamber operations.  

The most well known of these is the US based National Fire Prevention Association (NFPA) healthcare 
standard NFPA 99, which has a chapter on hyperbaric chamber safety which includes a number of 
requirements around electrical power. 

In the offshore resources diving sector, there are a number of guidelines around the safe use of electricity 
in diving and pressurised environments and the shipboard or platform environment from which diving is 
undertaken is covered by many electrical safety provisions.  

Currently there are no comprehensive and specific recommendations for electrical safety of medical 
devices used in saturation diving environments, and this is therefore an important sub-section of what the 
authors have tried to include in this report.  

It is hoped that this section will provide some preliminary guidance but it is recommended that a significant 
and specific effort is put into further developing recommendations and some degree of standardisation so 
as to facilitate the necessary functional operation during extended duration medical emergencies in 
saturation diving chambers. 

One issue that may be problematic is that some standards, codes and regulations have tried to ensure 
electrical safety by setting simple voltage and current or power limits. 

It should be noted that this does not automatically provide safety – for example, it is possible to create a 
fire igniting spark with very low voltages, whilst very high powered and high voltage equipment can be 
safely operated in hazardous locations such as offshore oil and gas production platforms, subject to highly 
engineered safety systems. 

Ideally, rigorous and expert risk assessment would be undertaken on all components of any electrical 
system in normal operation, under stress, and in failure modes. This is however, a very specialised field 
with few centres of expertise. 

Some general information is supplied on regulatory and standards issues in the following section but the 
detail is beyond the scope of this report.  

Useful guidance is included in the IMCA publication Code of Practice for Safe Use of Electricity Underwater 
- IMCA D 045. 

5.2 Fire Risk in Diving Chambers 

One of the major concerns with electricity is to avoid the risk of fire ignition inside a sealed space in close 
proximity to human occupants.  

The ease with which fire is ignitable rises greatly with increasing oxygen percentages and is thus highest 
in clinical single person hyperbaric chambers which are pressurised purely with oxygen.  

Ignition risk is moderately increased in air pressurised clinical chambers and DDCs with the risk highest 
when there is oxygen leakage from breathing masks or ventilators which contaminates the chamber 
environment without being adequately flushed away by a high rate of fresh air exchange.  

Particularly stringent electrical safety precautions are thus necessary in these types of chambers to 
guarantee that devices cannot provide an ignition source.  

For any given percentage of oxygen, there will be increased availability of oxygen if the chamber is at higher 
pressure (a higher ‘partial pressure’) and fire can therefore burn hotter and faster if it is ignited, and 
materials that are not flammable at lower levels of oxygen may become flammable.  

As heat is produced by the combustion process, the pressure inside a sealed chamber will rise unless the 
chamber is immediately vented.  

The heat, pressure, fumes and toxic gases produced by combustion all combine to create a significant 
hazard to the lives of the occupants with hopes of survival dependent upon whether the fire can be 
immediately suppressed by a high capacity hyperbaric fire-fighting system with concurrent rapid 
decompression of the chamber. 

The oxygen percentage in a saturation diving chamber at pressure is normally maintained at a much lower 
than in normal air.  
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Typically, the partial pressure is maintained at 1.5 – 2 times normal atmospheric levels as a safety factor 
against oxygen deficiency without risking the biological toxicity associated with oxygen at higher levels.  

Achieving the optimal oxygen partial pressure can call for an oxygen percentage inside the chamber that is 
as low as 2 – 5% only.  

As a result of this, the fire flashpoint will be much lower than normal during most of the time a saturation 
chamber is at pressure however there is still oxygen available to support combustion if it is ignited. 

100% oxygen breathing may be used via a mask, hood or ventilator for therapy or decompression purposes 
during the final phases of decompression, however, for some of the time the same risks apply as for an air 
chamber. 

Most of the electrical safety discussion that follows in this report is built around avoiding any fire ignition 
risk as a result of either normal operation or any failure modes of electrical and electronic devices with 
their associated batteries and power supplies.  

All medical devices are subject to many safety requirements aimed at avoiding electrocution risk.  

These issues are generally well covered by standard design features within the devices and within power 
supply safety systems, such as line insulation monitoring and using ungrounded power supplies.  

Very detailed guidance is available which is not further discussed here other than to note that any 
modifications needed for hyperbaric operations must not compromise the patient or user safety of the 
device.  

The principal international standards specifically applicable to medical device electrical risks are published 
by the International Electro-technical Commission – most notably the IEC60601 series of standards. These 
do not, however, have specific diving or hyperbaric provisions. 

5.3 Power Supply Inside Chambers 

With respect to electrical power inside diving chambers, it is generally considered unsafe to have mains 
power outlets (high voltage AC) available in any pressure vessels for human occupancy and any medical 
devices incorporating electrical and electronic elements will therefore be required to operate from low 
voltage power or battery. 

This has the diver and patient safety advantage that many risks of electrocution are mitigated by the 
absence of mains voltage AC power. 

Most electrical equipment potentially called for inside diving chambers will not be permanently installed 
inside the chamber or even kept within the chamber – it is more likely that these complex and expensive 
devices will be taken into the chamber when an emergency arises.  

The power supply therefore needs to be either part of the emergency response kit or installed in the 
chamber according to a standard that ensures the power is available and usable by the device in question.  

For DDCs, either hardwire or battery power can be used subject to power supply duration being adequate 
– it is recommended that at least 8 hours run-time will be required.  

For saturation diving chamber use, any of the items of equipment that are electrically powered will require 
a means of providing power for extended use over many days.  

Some devices specifically designed and approved for clinical hyperbaric medical chambers in Europe are 
supplied purely from hard-wired low voltage DC sources but it is unlikely that such equipment will be 
included in the permanent configuration of diving chambers.  

Many devices that might be taken into chambers are designed with a DC power-in connection, and this is 
most commonly 12 volt DC in order to enable automotive vehicle power to be used.  

The most commonly used alternative power supply inputs for medical devices are 24 volt DC, (as used in 
many truck, bus, marine and industrial environments) 28 volt DC (aircraft) and the more recent but almost 
ubiquitous 5 volt DC USB power outlet. Many other inputs exist, however, with specific power supplies or 
plug-packs often supplied with the device.  

It would be very useful for medical device manufacturers to have standard methodologies specified for 
medical device power supply into chambers.  

USB power can readily be supplied via a suitable voltage converter supplied from a 12 or 24 volt source 
and installed USB power does not, therefore seem an absolute necessity.  

Recommendation: It is recommended that a suitable group be commissioned to prepare and circulate 
improved and more specific guidance regarding the installation of low voltage power in diving chambers 
specifically for medical devices.  
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Note: Although consultation would be needed with the medical device industry it should be noted that any 
such guidance would, primarily, be aimed at the diving industry and chamber manufacturers who would need 
to install such systems into their chambers. 

Hardwired electrical power with interchangeable connectors inside the chamber is a problematic concept, 
particularly in terms of ensuring safety.  

The power requirement for multiple simultaneously operating critical care medical devices is likely to 
exceed what is recommended in some clinical hyperbaric chamber guidelines such as the US based NFPA 
99 standard.  

If 12 volt DC power supplies were chosen, these might need to have a 10 amp total current capacity in order 
to provide for devices with a power capacity up to 100 watts. The selection of 24 volts would, of course, 
halve this current requirement.  

Any medical power specification would need to include specifications for methods of safe installation and 
operation. Consideration of how to address the power safety issue once the chamber nears surface pressure 
with the associated increased fire hazard if high fractions of oxygen are used. 

The reliability and redundancy of the power supply should be specified with the aim of ensuring continuity 
of supply in critical care situations.  

If guidance was created regarding low voltage medical power supplies, it would be useful if a standard 
connector could also be specified which was of a type readily available from multiple suppliers.  

This would preferably be environmentally sealed as well as electrically insulated when connected. The 
connector should incorporate design features that prevent inadvertent disconnection of the power when 
current is flowing and the chamber is at pressure.  

The seal of any connector should not expose the connection pins and sockets to the chamber gas 
environment until power carrying conductors are separated sufficiently that sparking cannot occur. 

Two approaches would be possible with respect to supplying power from outside the chamber.  

Either there could be standardised power supplies installed into all saturation chambers for use by 
compatible medical devices, or there could be wiring only, with the responsibility for supplying medical 
power held by the supplier of the medical device using connectors compatible with the specified pre-
installed medical wiring cable. 

The latter would seem more attractive to the diving industry, especially for existing chambers. 

Whichever approach were chosen, it would be useful for bodies that specify diving medical equipment 
(such as DMAC) to publish a complementary Guidance Note or updated guidelines to help users select 
equipment that would be compatible with any future diving industry standard medical power supply 
system. 

5.4 Notes on the Different Options for Electrical Power 

5.4.1 Hardwired Power Reliability 

The main clinical safety issue here is the reliability and redundancy of the power supply. If the device is 
critical to patient safety, then the power supply must guaranteed throughout the care period, without 
fluctuations or interruption that might interrupt the function of the device.  

Externally this can be addressed by using dual medical grade power supplies powered from a guaranteed 
mains power supply or UPS, with either manual or automatic switching and suitable monitoring displays.  

A more common alternative is a high grade primary external power supply with a battery backup that is 
permanently connected and normally on continuous trickle charge.  

5.4.2 Hardwired Power Safety 

Whilst hardwired power supplies are external to the chamber this does not obviate all electrical safety 
concerns as there will be a risk of sparking with an associated fire risk if the power connectors inside the 
chamber are disconnected during use.  

This is usually best addressed by utilising connectors that cannot be easily or inadvertently disconnected 
such as connectors with a screw lock. 

There are widely available industrial connectors that offer protection against disconnection sparking risks 
including Explosion Proof designs and many types of underwater power, aerospace and hyperbaric 
chamber specific connectors.  
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If hyperbaric devices are designed for hardwired power use only, it is usual for one or other type of 
‘disconnection safe’ power connector to be incorporated, there are many variations and no common 
standard.  

For the more common devices that are also used for patient transport, and for most consumer electronics, 
the plugs used are readily disconnectable during use. This is probably not a major risk in the case of 5 volt 
USB power but devices supplied with 12 volts from high capacity power supplies could easily spark during 
disconnection.  

If hardwired power supplies with standardised connectors become routinely available in chambers as we 
recommend, many, if not most devices will require a change of power input connector or an adapter lead 
or plug.  

For adapter leads or plugs to fulfil the safety aim of preventing disconnection under load, the ‘unsafe’ 
original device connector will need to be secured suitably (for instance with glue, a locking screw, cover 
etc.) so that in-chamber connection and disconnection is only via the pressure safe connector. 

5.4.3 Power Supply Switching 

The modern generation of semi-conductor or hermetically sealed switches should make safe in-chamber 
power supply switching possible.  

It would be possible to have a single medical device with multiple power inputs and one power output to 
the device, with LED's to indicate power from the supply.  

Perhaps this could be based on a set voltage so that it can also indicate condition of charge and then a switch 
to connect to the medical device. This would allow safe disconnection of battery or hardwired power 
source, with supply switching to an alternative. 

The same technology could also be used in the reverse manner – that is, a high capacity single power supply 
could have switchable outlets to power more than one medical device.  

Either of these technologies could add flexibility and facilitate the use of multiple devices over prolonged 
periods since selection of suitable technology, customisation for diving chamber medical applications and 
rigorous safety testing is lacking at present.  

(There are a few examples of such systems that have been engineered to enable consumer electronics to 
be charged from saturation divers bunk light power supplies.) 

External power supplies must also be controlled and protected against over-voltage or excess current flow 
with suitable fuses and/or circuit breakers.  

Hyperbaric chambers are fabricated from steel and whilst this is usually painted there is often exposed 
stainless steel or aluminium and moisture or sea water present.  

Low voltage power systems need to be designed to prevent electrical shorts to such conductive surfaces. 
This will involve insulation, suitably robust cables routed and secured to minimise risk of damage and 
connectors that do not expose powered conductors. The low voltage side of the power supplies should not 
be earthed. (‘Ungrounded power’) 

5.4.4 Low Voltage Supply and Battery Charging 

Most relevant medical devices incorporate rechargeable batteries and circuitry that automatically charges 
these batteries when the external power is connected.  

This unfortunately creates safety risks for pressurised operations as it is under charge conditions that 
batteries most commonly fail in a dangerous manner.  

Dangerous failure during charging is probably most relevant for lithium batteries as discussed below. The 
other issue with charging batteries under pressure is that some battery types release hydrogen during 
charging creating a potent fire and explosion risk in a confined space. 

When a device is being simultaneously operated and is connected to external power because batteries are 
flat, the power input will be greatest. 

This readily foreseeable scenario is the time of greatest risk of overheating power circuitry inside the 
device and overloading of supply wiring.   

Overheating in connectors with corroded conductors with reduced but not absent conductivity within the 
connector is also possible. 
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There are potential solutions to all of the above problems but many solutions will involve modifications to 
standard designs.  

 For devices fitted with internal, rechargeable batteries, the internal charging circuitry shall be 
deactivated when the device is powered using external power. Battery charging shall only take place 
outside the chamber. 

 Batteries could be removed during chamber use, although this is a human and probably very fallible 
precaution and the device will revert to being a hardwired device only, requiring suitably reliable low 
voltage power. 

 Battery charging could be disabled manually via a suitable switch or in theory automatically via some 
sort of analog or electronic pressure interlock. 

5.4.5 Exchangeable Batteries 

Some medical devices incorporate removable batteries (either single use or rechargeable and sometimes 
the option exists to use either.)  

This may be a good option provided the device is of a type that does not require continuous operation. Safe 
battery exchange usually involves powering down the device which may not be clinically acceptable.  

A safety evaluation is needed for all the potential risks of this type of practice including the risks of battery 
damage during pressure change, of shorting a removed battery to metal surfaces or via wet hands, and how 
to ensure the device is powered down when the batteries are changed, so as to prevent battery removal or 
insertion under electrical load. 

It is a known fact that standard, non-rechargeable, sealed dry cells may shrink on compression. This may 
lead to contact being broken with the battery (ies) and a subsequent power loss. The manufacturer shall 
test for this condition and apply a modification to ensure that power cannot be lost at a depth of ± 20% 
deeper than the rated depth. 

5.4.5.1 Hot Swappable Batteries 

Some medical transport devices incorporate ‘hot-swappable’ batteries which enable one or more batteries 
to be removed and replaced whilst the device continues to operate on other batteries.  

One model of clinical hyperbaric intensive care ventilator (Maquet Servo-i) has this feature as a legacy of 
its intensive care parent, however the manufacturer required battery removal prior to pressurisation and 
operation on low voltage power only in order to avoid fire risks  

5.4.6 Generic Battery Supplied Power Units 

It should be simple to manufacture extension battery packs for hyperbaric use that are able to be charged 
outside the chamber then transferred in for use with the relevant device and connected via the external 
low voltage power-in connector.  

Free standing power supplies are generally seen as undesirable as they introduce a potentially large and 
relatively uncontrolled energy source into the chamber.  

They also carry the same safety hazards that exist around the interface between any external power pack 
and the device its power supplies, often without the expected safety systems that are usual with externally 
powered, permanently wired systems. 

It should be possible to engineer safety into such power packs, and the principles of portable, universally 
usable and long duration power packs are attractive. (The authors of this report are not aware of any 
suitable systems presently on the market.) 

5.4.7 Battery Types 

Ideally, each individual model of battery considered for diving chamber use would undergo failure modes 
and effects analysis (FMEA) as well functional testing of multiple samples for pressure tolerance.  

In practice, the safety of various battery types are most commonly discussed as if the issues are the same 
for all models of battery within any one chemistry type. 

This is probably inadequate, as within each generic category of battery chemistry, there are usually many 
different constructions, as well as widely varying quality, embodied energy and safety components. 
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Risk should generally be low with low voltage single use ‘dry cell’ batteries such as alkaline batteries. Small 
single use lithium ‘button’ batteries and time-clock batteries incorporated into devices should also usually 
be very low risk. There are however, specific risks associated with all of the commonly used rechargeable 
batteries.  

Lead acid batteries with liquid acid should not be used in chambers as a result of the consequences of acid 
spillage.  

‘Spill-proof’ sealed gel cells and glass fibre mat absorbed cells may be pressure safe but will need 
individual assessment and testing. Lead acid batteries release hydrogen when being charged and should 
not be charged under pressure. 

Nickel cadmium (NiCad) batteries have become relatively uncommon in recent years due to the 
availability of nickel metal hydride (NiMH) and lithium batteries with superior performance 
characteristics.  

Cadmium is an extremely toxic metal and the increased risk of damage under pressure makes this 
chemistry undesirable for hyperbaric use. 

NiMH batteries are perhaps the most suitable chemistry rechargeable battery type presently in use.  

The components of these batteries are non-toxic and they are used in a range of medical devices. 

In many cases, it is possible to obtain NiMH batteries in a configuration that enables replacement of NiCad 
or Li-Ion batteries. 

The most common battery type incorporated into modern devices is generically labelled as ‘Lithium Ion’ 
(Li-Ion), or in some cases, ‘Lithium Polymer’ (LiPo) although LiPo is really just a sub-category of Li-Ion.  

Most authorities have concerns about the hazard inherent in any form of lithium chemistry battery when 
used in the hyperbaric environment given that pressure exposure may increase failure risk and many 
lithium battery types are capable of failing in a high-temperature ‘melt down’ mode.  

Destructive heat production is most usually the result of the concentrated discharge of the high amount of 
embodied electrical energy, but some Li-Ion types are also probably capable of a runaway chemical fire fed 
by the lithium component and oxidants inherent within the device.  

Such electrical heat discharge or chemical heat production produces very high temperatures that can ignite 
many other materials, melt metal, and continue even when immersed in water.  

There are, in fact, multiple different lithium battery chemistries, some being less prone to failure than 
others and some construction methods and geometries more robust and/or pressure tolerant.  

In LiPo cells, the lithium chemistry is incorporated into polymer sheets, resulting in a thin, flat battery form 
that ideally suits mobile telephones and tablet devices. Very high capacity LiPo cells have been used in 
power batteries for submersibles exposed to very high pressures underwater, supporting the opinion that 
LiPo cells may be safer than the common cylindrical Li-Ion cells that are fabricated from long strips of 
anode, cathode and separating membrane, wound up into a cylinder.  

Quality control of construction of Li-Ion cells is critical as hot-spots and failure can originate at the sites of 
breaches in the membrane between anode and cathode.  

This can occur as a result of manufacturing variability, perhaps brought to a critical point by damage to the 
cell, possibly by repetitive pressurisations and depressurisations. 

The safety of modern Li-Ion cells is also in significant part brought about by ‘add-on’ safety components 
built into the battery container.   

These can include electronics that limit charging rates and prevent excessive discharge, temperature cut-
outs and mechanical vents that ensure that gas pressure cannot build up inside the cell.  

These safety systems are critical to preventing dangerous battery failure, yet the tolerance of these systems 
to pressure remains unproven at present. 

There are examples of manufacturers who have released clinical hyperbaric medical devices to market with 
Li-Ion batteries (e.g. the Corpuls Hyperbaric Defibrillator).  

Such manufacturers will have undertaken significant testing in house and by third parties to ensure that 
their device’s batteries are safe.  
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Testing has not extended to the higher pressure range required for diving chamber use, however, and a 
question remains as to whether battery safety will be maintained over time, as battery ageing, and 
repetitive pressurisation may degrade safety. 

5.4.7.1 Alternative approaches to battery safety 

Batteries can be rendered safe for hyperbaric use if they are fully encapsulated in a pressure proof housing, 
which protects the battery from pressure and which would contain the battery in case of any problem. 
Helium Venting issues mentioned above, need to be considered here. 

An alternative that could be explored includes heat dissipation cases or phase change material cases.  

These provide significant heat absorption and protection from over-temperature conditions, as long as the 
quantity of phase change material used is sufficient to absorb the energy available.    

 

6 Relevant Regulatory Processes 

6.1 Generic Overview of Medical Device Regulations 

Medical devices are an essential part of the provision of healthcare and there are a range of laws, 
regulations, standards and licensing requirements in every country to ensure that medical devices remain 
safe and effective.  

Globally, the definition of what qualifies as a medical device varies but the principles remain the same – 
anything that is specifically designed and marketed for use in caring for a patient.  

Generally, regulation is getting stricter and this trend sees some equipment that was not historically 
defined as a medical device now clearly covered by regulation in many jurisdictions.  

Hyperbaric oxygen therapy chambers are now considered as regulated medical devices in many countries.  

Fortunately, however, operators of occupational diving support chambers are not faced with the 
requirement for the chamber itself to be a ‘Medical Device’ – it is just the environmental setting inside which 
the relevant medical devices must work.  

The rigour of medical device processes varies with the degree of risk associated with any particular type of 
device. Medical devices are most commonly categorized into one of three classes, as defined in following 
text (see below for definitions).  

The most rigorously regulated class 3 devices are mostly those that are surgically implanted and these are 
unlikely to be relevant to emergency care in the diving workplace.  

Most of the devices which have diving environment specific requirements fall into the Class 2a and 2b 
categories.  

6.1.1 Trans-national issues 

A special problem for international operators in the commercial diving industry is determining what 
jurisdictions are relevant – in some cases diving vessels or platforms are in international waters. It is 
common for there to be multiple nationalities responsible for different aspects of a project e.g. 

• The port of origin of a vessel 

• The physical location of the works  

• The nationality of the medic or ship’s captain responsible for drugs and medical devices  

• The location and registration of the supervising medical officer (who may be on the other side of the 
world)  

• The nationalities of the primarily responsible employer, the operator and, of course the patient.  

In practice, this is mainly a problem with respect to who takes responsibility for patient care and for 
ownership of ‘dangerous drugs’.  

To date it has been rare for questions to be raised about the source of common items of first aid and medical 
emergency equipment.   
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The responsibility for supplying legal and appropriate equipment is generally accepted by the company 
who supplies the kit – most commonly a diving contractor – and the suppliers, purchasing officers, medics, 
nurses and/or doctors involved will have to work with what is made available.  

Sometimes this situation brings with it problems with compatibility of power supplies, radio spectrum or 
language of labels and instructions.  

The diving contractor will often be contracted to an Oil Operator and there may be requirements set by the 
Client and/or by officers of the jurisdiction where the works are being undertaken.  

Again, the most frequently asked questions relate to what drugs are legal in the relevant jurisdiction.  

It is theoretically possible but not common, for questions to be asked about medical devices, however 
unlike ‘dangerous drugs’ most of the medical devices needed for support of diving operations do not 
require specific prescription or ‘physician only use’, and even where such rules do apply, there are usually 
pathways open to allow a locally licensed physician to take responsibility and ‘authorize’ medics or a ship’s 
captain to hold and if needed use such equipment.  

6.1.2 Medical Device Regulation1 

The most significant internationalised medical device regulatory system operates in Europe. There are 
several main European Community Directives that guide the medical device regulatory environment within 
Europe and the United Kingdom.  

As with many EC Directives, these Directives have a primary aim of creating open and competitive markets 
in addition to the patient safety aims of such regulation.  

Compliance with these directives requires member countries to have legislation and administrative 
systems in place to enable approval of medical devices by a ‘Competent Authority’ which can then approve 
‘CE Marking’ to allow use with patients across Europe. CE marking is the most widely recognized medical 
device approval system in the world although many other jurisdictions have robust systems, with the 
United States and Japan being notable developers and manufacturers of medical devices under their own 
regulatory systems.  

Council Directive 93/42/EEC is the primary ruling for members of the European Community and its 
provisions have been taken up into legislation in each country, albeit with some important differences in 
how oversight of the medical device market is provided.  

It provides the overarching principles for medical device approvals, the classification matrix and is 
harmonized with the critical European and ISO Standards that cover medical devices. Critical international 
standards for medical devices include ISO 14971 - Application of risk management to medical devices and 
ISO 13485 Quality management standard for medical devices.  

This latter standard is harmonized with the more generic ISO 9000 series of quality standards. Another set 
of critical documents with much more specific information about various types of devices is the 
International Electro-technical Commission IEC 60601 series of standards. 

The practical implementation of these Directives is administered slightly differently in different countries. 

In some, the regulatory authority has its own inspectorate that directly examines the design and 
manufacture of devices and then provides medical device approval if warranted. Others, by contrast, use 
private, third party agencies to assess the competence of the manufacturer to design and manufacture a 
medical device.  

                                                      
1 A good source of overview information on medical device regulation is the website of the UK’s Competent 
Authority, the Medicines and Healthcare products Regulatory Agency (MHRA) which publishes Bulletins which 
explain the requirements and clarify various issues in straightforward language. 
It should, of course, be remembered that the MHRA advice represents the UK legal situation and both law and its 
interpretation will be somewhat different in other jurisdictions, despite harmonisation. 
Readers should note the above section attempts to summarise some general principles from the point of view of the 
authors who do not have legal training.  
The legal position applying in each reader’s jurisdiction will depend upon the jurisdiction’s relevant laws and any 
Standards and Codes called up, as well as local interpretation and the administration processes of the relevant 
authorities. 
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Acknowledging that the greatest expertise in medical device engineering often resides within the 
manufacturer’s company, a substantial focus is on audit of quality assurance systems including quality 
assurance over company management as well as device design, safety testing and manufacture.  

Once approval is received by a company under such quality based arrangements, it is often possible for the 
company to manufacture new devices which are declared as ‘substantially similar’ and therefore able to be 
CE marked and marketed using an existing approval, rather than having to undergo a new inspection.  

This pathway for development is an attractive one for hyperbaric compatible medical devices, as it avoids 
much of the cost of gaining approval for a new device. It is, however, only applicable if there is a ‘parent 
device’ which is sufficiently suitable for hyperbaric use that only relatively minor changes are required.  

Any manufacturer using this pathway will have to have sufficient expertise in house to understand the 
challenges and requirements of making a device hyperbaric compatible and in most cases, external 
validation by a suitable third party testing agency would be wise if not required. 

Medical devices are categorised according to the perceived risks associated with the device.  The 
categorisation rules are complex and are as follows; 

• Class I Medical Devices are typically non-invasive devices that do not deliver drugs and this class 
includes passive objects like chairs and bedpans.  

Most relevant Class I devices are relatively simple items for which there are no operating limitations 
specified, and where the device is clearly an inert item that is obviously inert to pressure change, such 
as a simple plastic splint, a bandage and similar items, although some caution is necessary as saturation 
diving pressures may be sufficient to deform items made of foamed plastics for instance. 

• Class IIa Medical Devices include most surgical instruments, infusion pumps and equipment that can 
act physically upon the body but in a non-hazardous way.  

• Class IIb Medical Devices include lower risk implantable devices and all devices which can deliver 
potentially dangerous energy to the body or modify physiology or drug actions.   

• Class III Medical Devices are those categorized as carrying the highest risk, such as implantable 
pacemakers and invasive neuro-monitoring equipment. (Note that when hyperbaric chambers are sold 
for hospital or clinic based medical therapeutic purposes, they are classified as Class IIb devices, 
however this is not considered to apply to the sale of diving chambers) 

In recent years, there have been many developments in the regulation of medical devices. New ISO 
standards have been developed, often originating from previous Euro-Norms. 

There are a number of ISO committees working on international standards to replace previously varying 
country by country standards.  

One such important committee is ISO TC121 – Anaesthetic and respiratory equipment, where a debate has 
been initiated as to whether hyperbaric medicine deserves a specific subcommittee within this Technical 
Committee.  

There have also been significant revisions and developments with respect to the IEC 60601 series of 
standards, which provide the most detailed template for the design, manufacture and safety testing of 
medical devices involving electrical components.  

Most medical device regulatory authorities and most countries' laws call for compliance with IEC 60601, 
although in some cases only older versions or specific parts are called up at this time.  

Much work remains necessary with respect to international harmonisation, given that the market for most 
medical devices is worldwide and it is presently difficult for manufacturers to gain approval in multiple 
markets, given so many different and often complex, slow and expensive administrative pathways.   

Most companies with a new medical device will engage specialists to help assemble the paperwork or to 
provide the auditing required to gain approval to ‘go to market’.  

 

6.1.3 Multi-component and modified devices 

‘Composite’ medical devices have created challenges for regulators in recent years – especially when 
consumer devices are used as part of the operation of a medical device.  
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An example might be a physiological monitor which has a laptop computer and printer connected, all 
powered from a small computer UPS, connected with ‘off the shelf’ power leads.  

From a patient safety point of view, the whole assembly needs to be considered as one system but the 
monitor manufacturer has only provided one part of the system – the final responsibility for patient safety 
rests with the persons who purchased the items, assembled them into a complete working system and then 
put the finished system into service.  

In this setting, the person who assembled the system can be considered to have become ‘The Manufacturer’ 
from a legal point of view unless the monitor manufacturer has specifically identified that the selection and 
connection of each of the ancillary components is part of the design for which they gained approval.  

Similar considerations come in to play whenever a modification is made to a medical device, for instance 
to make it compatible with the hyperbaric environment.  

If work is conducted on the device by a manufacturer trained technician and according to the technical 
manual, then this could in some cases be considered normal practice that does not void the device’s 
warranty or its medical device approval and CE marking.  

This could even be the case when the modification is made by a biomedical engineer independent of the 
manufacturer but who has been trained and approved by the manufacturer for the maintenance of a 
particular device.  

As discussed earlier, it can be allowable for a manufacturer to approve modifications in accordance with 
their own internal approval and quality assurance processes, with the resulting modified device falling 
under the same medical device registration as the original ‘parent’ item of equipment. 

In contrast to the above, if a significant change is made to the device in any way that is not approved by the 
original manufacturer, the employer of the engineer making the modification can be considered to be the 
new ‘Manufacturer’ who is now legally responsible for the device.  

When the modifier is also the user, this is not too complicated, but if there is any consideration of selling or 
distributing the modified device to other users, all of the requirements associated with registering a new 
medical device will probably come into play, along with potential conflict with the original manufacturer.  

Just what is ‘significant’ is open to some debate, but non-significant changes would usually be considered 
to be limited to those that are listed within the device’s operating instructions, environmental 
specifications, technical manual or service manual as published by the original manufacturer. 

There are provisions that may allow hospitals (but probably not other parties) to avoid the cost, delays and 
paperwork involved in seeking medical device registration themselves for such modifications or for 
assembly of composite device systems. Medical device regulation primarily controls the ‘marketing’ of 
medical devices. 

If there is no ‘marketing’ then the regulations may not apply, and this can be considered the case when a 
hospital’s biomedical engineering department manufactures or modifies a device for use in the hyperbaric 
chamber.  

Note, however, that supplying a successful custom made device to another hospital would be considered 
‘marketing’ in most jurisdictions, whether payment is made or not. Also important to note is that general 
safety and liability provisions of law always continue to apply – it is only the registration and CE marking 
component of law that can be avoided.  

The pathway of an individual hospital manufacturing or modifying a medical device for saturation diving 
use might thus have potential to deliver specific equipment items to a specific medical response team, but 
it is clearly not an answer to the problem faced by the diving industry in sourcing functional and compliant 
devices. 

6.1.4 Off Label Use 

A legal principle that does offer some wider flexibility to manufacturers of devices that might be useful for 
the diving industry relates to the ‘labelling’ of medical devices. Labelling refers to the methods of use and 
the indications for use that the Manufacturer identifies for the device in the operating manual or on the 
‘label’.  

The information submitted by the Manufacturer to the medical device regulatory agency will define what 
is ‘on-label’ versus ‘off-label’ use. Included in the manufacturer’s documentation will be the environmental 
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operating conditions that are allowed and this will only rarely include hyperbaric pressure. In some cases 
there may be a reference to hyperbaric use being either allowed or specifically not recommended.  

Off-label use is usually considered to be use for an indication other than recommended by the manufacturer 
but the term can also be considered to apply to use of the device in an environment that falls outside the 
manufacturers specific ‘operating environment’, for instance at pressure inside a hyperbaric chamber.  

In at least one recent instance, these different ‘label’ considerations were not in alignment – the Cardinal 
Alaris modular infusion pump system used to have its operating conditions specified as including pressures 
of 0 – 6000hPa (full vacuum to 6 ATA) but it was specifically not approved for hyperbaric oxygen chamber 
use.  

Presumably the warranty was not voided by having the pumps used in the chamber but any use on patients 
would have been clearly ‘off-label’.  (This has since changed and Cardinal now do support hyperbaric 
chamber use).  

It would in principle be possible, therefore, for a manufacturer to test one of their products against the 
environmental parameters set down in this document and extend the device’s environmental operating 
conditions in response to this without specifically changing the devices ‘“Intended Use” to include the 
diving chamber environment.  

In such cases, the device would have to be used “off-label” by the relevant healthcare provider, but only off-
label in an environmental sense and not in terms of the clinical indications or therapeutic aims of use.  

The consequences of off-label use vary somewhat in different jurisdictions but as a general principle, a 
physician is entitled to use a device “off-label” in several circumstances. 

In an emergency, the physician (and his or her employer if relevant) can take responsibility for off-label 
use.  

Off-label use may also be permitted for “special” or “compassionate” purposes. Such off-label use will 
usually require a special application or at least notification to the medical device authority – in some 
jurisdictions for every case where the device is used.  

It is this principle that will most usually apply to more complex medical devices used inside diving 
chambers, unless the manufacturer has specified that the Device is for saturation diving chamber use. 

6.1.5 Non-Medical Devices and Accessories 

There is significant potential for the development and testing of devices which are not medical devices, but 
which will be able to significantly assist in medical care in diving chambers.  

Any such devices need to be safe and functional within themselves, and also need to not degrade the safety 
of other devices, but they should not need approved via medical device regulatory pathways. 

There are probably two categories of such devices, devices which are non-medical but which have an 
incidental value in healthcare and devices which might be accessories, mounting or power supply 
components or modifications to the chamber.  

The first category involves no direct connection or interaction with any medical device and would include 
items such as LED headlamps and IT and communications equipment that simply transmits audio-visual 
content.  

The second category covers items which connect to or interact with a medical device in some way, but 
without being part of the medical device and thus subject to the ‘composite device’ concept that sees the 
person assembling the final system become the ‘manufacturer’.  

This category can include things like power supplies, cabinets and cases, mounting brackets, gas supplies 
and gas exhausts, and in some cases remote displays that enable viewing of video-out.  

In order to avoid the ‘composite device’ complications, such accessories or installation hardware needs to 
be either approved by the manufacturer (e.g. ‘this video out port can be connected to any analogue video 
display unit capable of receiving a VGA or higher resolution signal’ or ‘VESA mounts are supplied for 
mounting the device’) or else it must be external to some defined ‘boundary’ of the device and if it supplies 
energy or gas, the supply must meet the manufacturers requirements.  

Examples of this would include the gas supplies for ventilators, exhaust scavenge systems and power 
supplies which connect into the standard external power socket of a device.  
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Storage cases would clearly be considered as accessories not impacting on the use of a medical device, but 
a pressure proof case to enable a device to be used in a chamber would be more arguable, with issues such 
as ventilation, temperature and any changes to patient connectors needing to be considered. 

  

7 Existing Standards, Codes and Guideline Documents 

The following existing documents provide mandatory, guidance or ancillary requirements for a 
manufacturer to follow in the design, production, testing and certification of appropriate medical devices 
or equipment. 

Many of the documents are not specific to the commercial diving industry. 

The existing overall regulatory processes have been summarised in section (6) above.  

The first list contains the traditionally ‘international’ documents, being those that are usually referred to.  
Thereafter, region-specific documents are listed to specifically contain hyperbaric or commercial-diving 
reference materials. 

The focus is on existing, regional-specific documents so that manufactures can obtain the appropriate 
focus; however, they can then obtain guidance elsewhere where their region may contain insufficient 
documented requirements or guidance. 

 

The codes, standards, guidelines and reference materials mentioned below are provided as guidance 
only. Certain juridisctions might specifiy compliance with applicable documents; classification societies 
may waiver national compliance for offshore applications; but it remains the responsibility of the 
manufacturer to comply with the needed  and applicable documents.  
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7.1 International Medical Device Standards of a ‘Top Level’ Nature 

 

Reference Type Description 

ISO 14971 Standard Establishes the requirements of risk management for 
ensuring the safety and reliability of medical devices. 

IEC 60601-1 Standard 
 

Identifies required safety standards and essential 
performance for electro-medical equipment. 

ISO/TR 80002 Guidance 
document 
 

Validation of software used for the production and 
service of medical devices.  Applies the risk 
management requirements of ISO 14971 to medical 
device software. 

IEC 62304 Standard 
 

Defines software life-cycle requirements for medical 
devices to establish a framework for software 
development and maintenance. 

 

7.2 European Medical Device and Diving Chamber References 

 
Reference Type Description 

93/42/EEC 

2007/47/EC 
Directive Establishes requirements & standards for the design 

& manufacture of medical devices, primarily to ensure 

safety & reliability.  Devices classified according to 

risk (4 classes). 
EN 14931 

(PVHO) 
Standard Provides performance & safety requirements 

(including test methods) for medical multi-place 

pressure chamber systems. 

Note Annex B: Recommendations for medical devices. 
 

 

7.3 Classification and Certification Societies 

 
Reference Type Description 

DNV-OS-E402 Offshore 
Standard 

Provides criteria for design, fabrication, testing & 
commissioning of diving systems. Includes guidance on 
life-support equipment. 

GL-2009 I Part 5 Certification 
Rules 

Provides rules for the design and construction of all 
forms of manned pressure vessels. Includes guidance 
on life-support equipment. 

Lloyd’s Register 
of Shipping 

Certification 
Rules 

Provides rules for the design and construction of 
diving systems, including life-support systems. 
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7.4 Industry Association Guidelines 

 
Reference Type Description 

IMCA D034 Regulatory 
Guidance 

Norway/UK joint guidance document incorporating 
NPD & UK HSE regulations; Norsok standards; IMCA 
guidance; IMO codes; DMAC guidance: Specifies 
medical personnel & equipment requirements. 

DMAC 015 Guidance note Specifies medical equipment to be available on site for 
offshore diving. 

DMAC 028 Guidance note Specifies the requirements for emergency medical care 
for divers in saturation. 

IMCA D039 Guide FMEA (Failure Modes & Effects Analyses) for diving 
systems, including aspects of life support for divers. 

IMCA D052 Guide Guidance on Hyperbaric Evacuation Systems. 
British 
Hyperbaric 
Association 

Guide Provides guidelines for medical electrical equipment 
standards for hyperbaric treatment chambers. 

EIGA 152/11 Guide Comparison of required gas quality levels for Europe, 
the US and Japan. 

  

7.5 US and North American Reference Materials 

 
Reference Type Description 

FDA: Various Legal acts & 
various 
regulations 

Food & Drug Administration: Lists the requirements 
for registration with the authority prior to medical 
equipment being marketed for medical application in 
the USA. 

FDA 21 CFR  
Part 11 

Legal US law (Code of Federal Regulations) which allows for 
the implementation of computer systems, but ensures 
that any software used to develop and manufacture 
medical devices meets the standards for data security 
and integrity. 

NFPA 99 
Cpt 14: 2012 
edition 

Code Health Facilities Code: Specifically provides 
requirements for new equipment to be provided for 
use in hyperbaric facilities. 

NFPA 70 NEC 
 

Code National Electrical Code providing specific 
requirements for electrical safeguards.  

ASME PVHO-1 Standard Provides the requirements for any structural changes 
to the pressure vessel for installing medical equipment 
(penetrations, supports). Covers diving and clinical 
hyperbaric chambers.   
 

American 
Bureau of 
Shipping 

Rules Provides rules for the design and manufacture of 
diving & hyperbaric facilities, including life-support 
and safety considerations.  

ASTM Standard Guide G63-99: Evaluating non-metallic materials for oxygen 
service. 
G 88-90: Designing systems for oxygen service. 
G 93-96: Cleaning methods and cleanliness levels for 
materials and equipment used in oxygen-enriched 
environments. 
G 94-92: Evaluating metals for oxygen service. 

CSA Z275.1-93 Standard Provides requirements for the design and construction 
of hyperbaric facilities. 

ASME STP-PT-
047 

Guidelines Provides safety & performance guidelines for 
regulatory submission of medical hyperbaric 
chambers. 
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Reference Type Description 
CGA 
 
 

Handbook Compressed gas handbook containing specification on 
types of connections for different gases - to ensure 
appropriate connection safety, quality of gases and gas 
storage vessels. 

 

7.6 Australia New Zealand Reference Materials 

 
Reference Type Description 
TGA: 
Various 

Regulation Therapeutic Goods Administration: Lists requirements 
for registration of medical equipment prior to sale into 
Australia.  

TGA 
ARGMID 

Regulatory 
Guidelines 

Provides guidance for manufacturers of medical 
devices to comply with Australian legal requirements. 

AS/NZS 2299.1 Standard Requirement for equipment and procedures for 
occupational underwater operations up to 50.0 m. 

AS 4774.2 Standard Requirements for the design & construction of PVHO 
but excluding underwater diving equipment. 

NOPSEMA 
(Australia) 

Diving 
Guidelines 

General requirements for diving activities in the 
offshore resources and greenhouse gas storage sector.  

Occupational 
Diving (NZ) 

Guidelines General requirements for occupational diving activities 
to comply with HSE regulations. 

AS/NZS 3200  Standard Requirements for medical electrical equipment. 
AS/NZS 3551 Standard Requirements for the development of medical 

equipment management programs. 

7.7 Others 

Each nation has its own medical device regulatory system with detailed compliance systems. The most 
relevant are those of the nations that manufacture the most commonly used medical devices.  

These are Europe, the USA and Japan. European nations follow processes that are generally very similar 
utilising the ISO, IEC and EU standards and regulatory processes leading to CE marking. 

Items manufactured for sale only in the US must primarily meet FDA requirements but if sold 
internationally will have complied with the relevant ISO codes and the specific requirements for 
registration in each relevant jurisdiction. To date, the authors of this report have not identified any nation 
that publishes diving medical equipment specific requirements. 

7.8 Outcomes of Testing 

Ideally, medical devices would be manufactured that are suitable for commercial diving chamber use and 
are fully approved by the regulatory authorities in the country of manufacture at least. Third party 
validation testing would have been performed by a reputable and suitably experienced organisation and 
the device would function completely normally at pressure.  

This may not always be possible for various technical or market reasons so it would be desirable for 
medical devices to also be available if any of the following outcomes were achieved; 

• The device functions satisfactorily, but requires non-standard accessories or special gas or power 
supplies in order to enable this function. 

• The device functions with limitations compared to its normal functioning. The device functions with 
limitations that make it fail to reach published standards. The device functions sufficiently to provide 
a useful clinical efficacy that would be better than not having the device. 

• The device requires modification in the way it is used at pressure. These modifications could involve 
a physical change, such as removing a battery or other part, or non-standard user interactions with 
the controls, or changes to normally used settings. 

• The device has had to be modified from its original form, in either hardware or software to enable it 
to be used in the hyperbaric environment.  
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8 Existing Testing Processes and Centres of expertise 

At present, there do not appear to be any specific centres of expertise in the testing of equipment for the 
saturation diving environment. Likewise, there does not appear to be any best practice document as to 
how to proceed with such testing.  

A useful reference for hyperbaric equipment testing is Burman F, Sheffield R, Posey K. Decision process to 
assess medical equipment for hyperbaric use. Undersea Hyperb Med.  2009 36 (2): 136-44.  

One of the other authors of this report (Millar) and his colleagues have also published a general flow chart 
process and the details of testing undertaken for a number of items of electronic and non-electronic 
equipment, again this is limited to looking at suitability for low pressure hyperbaric oxygen chamber 
environment.  

Internationally, there are a number of hospital based hyperbaric medicine units with an interest and 
some demonstrated expertise in testing medical equipment for hyperbaric purposes, these have to date 
each used their own processes.  

These centres have published reports on the testing of various individual items of equipment, with 
varying degrees of rigour involved.  

Any of these could potentially pursue testing into the saturation diving pressure range, were they to have 
access to a higher pressure mixed gas test chamber. 

A number of individual diving contractors have taken an interest in this field, trialing individual 
equipment items in the saturation diving pressure range  

There are understood to be a number of individuals with an interest and varying levels of official support 
within the Navies of a number of nations, including the US Navy and the Navies of a number of European 
nations.  

There are significant efforts underway to improve international cooperation and capabilities for 
responding to sunken submarines. This would require pressurisable equipment similar to that discussed 
here, although it is most likely that only low pressures would be involved in any survivable situation.  

To date, it is understood that little progress has been made with respect to equipment, with most efforts 
focused on transfer under pressure rescue systems. 

In the United Kingdom, the equipment related research and testing activities of the former Royal Navy 
Physiological Laboratory have been transferred to the private entity, Quinetic, which has substantial 
capability, were it to be tasked and funded. 

It is known that a group within this company are currently working on the whole issue of battery safety 
and other such issues with using battery driven electrical equipment in diving chambers.   

This work is likely to be a valuable contribution to our knowledge base and should help move some of the 
issues, mentioned above, forwards.   

With respect to third party verification and certification testing, there is one notable group with 
experience in this field and their own processes, the diving and hyperbaric group within the Det Norske 
Veritas - Germanischer Lloyd group of companies. 

A wide variety of government, military and commercial groups in most countries have expertise in 
specific testing processes and could be utilised for various aspects of testing, such as flammability, off-
gassing, physical properties, electrical hazard ratings etc. however this would require funding and in each 
case, specifications to be provided as to what needed testing and against what criteria. 

A number of space agencies, including NASA and ESA are understood to be trialing a variety of high level 
medical care equipment systems for potential use during long duration space flight and/or future Moon 
and Mars habitation.  

Although the space vehicle environment does not present the pressure tolerance challenges of diving 
chambers, there is much potential value in the combination of software guided systems with remote 
video telemetry for both diagnostic and therapeutic purposes, should such equipment go to market.  

Amongst other fields, ultrasound, endoscopy and robotic surgery are understood to be under 
investigation. Testing for diving chamber suitability would be required but the technology groups 
involved might prove to be useful resources if they could be engaged. 
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Finally, remote monitoring, especially wth the use of video links and increased data transfer 
requirements,  may require significant data transfer rates. The use of compression data compression or 
bit-rate reduction should be considered to reduce transmission requirements (also referred to as 
bandwidth requirements). 
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9 Glossary 

CE Conformité Européene: previously EC.  Mandatory conformity marking for certain products 
sold within the European Economic Area. 

CO2 Carbon dioxide: a by-product of human breathing as well as a comtanimant produced by 
internal combustion (engines), combustion (fires) and cooking. 

DDC Deck Decompression Chamber, a hyperbaric chamber usually used to the limit of air diving, or 
50 MSW.  

DCI Decompression illness, any residual tissue gas condition that causes a diver to suffer medical 
issues. Decompression sickness is one such issue, commonly referred to as "the bends". 

DMAC Diving Medical Advisory Committee, an independent body providing guidance to medical 
practioners and industry as to how to prepare for, avoid and manage diving illnesses and 
injuries in the commercial diving industry. 

DMT Dive Medical Technician, a formal qualification obtained to allow a support person to manage 
injured or ill divers. 

DNV-GL Det Norske Veritas (Norway) – Germanischer Lloyd (Germany). Previously two separate 
classification societies providing certification services for diving support vessels and 
equipment; now one organisation. 

ESA European Space Agency 
FMEA Failure Mode and Effects Analysis: a systematic analysis and pro-active technique for 

determining causes for and predicting failures. 
FDA Federal Drug Administration: a USA-based approval authority issuing pre-marketing 

clearance for the sale, in this case, of medical equipment. 
G In terms of sea-state, 1 g = 9.81 ms-2, or the acceleration equating to the gravity induced by 

the earth. 
 In terms of pressure, g refers to a gauge pressure, which is a relative measure of pressure with 

respect to the immediate environment.   
Heliox A suitable and predetermined mixture of helium and oxygen. 
HRF Hyperbaric Reception Facility, the pressurized living environment that a hyperbaric life raft 

would connect to once rescued from the ocean. 
HSE Health and Safety Executive, a UK statutory organisation tasked with the responsibility for the 

health and safety of people at work. 
Hyperbaric In the context of this document, and where coupled with the word treatment, refers to the 

treatment of any injured person using oxygen under pressure as the medicinal agent.l 
IMCA International Maritime Contractors Association, an international trade organisation 

representing business providing diving and other offshore services. 
Intra-osseus Using the context of infusion: the injection of fluids directly in the marrow of the human bone 

to provide a non-collapsable point of entry into the venous system. 
IT Information Technology, the transmission, retrieval, storage and manipulation of electronic 

data. 
LED Light-Emiting Diode, used here in the context of either indicators or lighting used inside the 

pressurized chamber. An electronic device that produces light when activated. 
MHRA Medicines & Healthcare products Regulatory Agency, similar to the FDA and the UK regulating 

authority for medicines and medical equipment. 
NASA North American Space Agency 
Nebuliser (Also nebulizer) is a drug delivery device that is used to administer medication in the form of 

a mist inhaled directly into the lungs. 
NFPA National Fire Protection Association (USA), a body that creates and maintains standards and 

codes for use in the prevention of fires and which may be adopted by local governments or 
other parties. 

Quarter turn Quarter turn valves, also referred to as ball valves or quick-acting valves. General used to 
isolate gas lines using a 90° rotation between fully closed and fully open. 

RH Relative Humidity, the amount of water vapour present in air expressed as a percentage of the 
amount needed for saturation at the same temperature. In essence an indication of the 
humidity in the air, with 100% being the maximum.  

Saturation Saturation diving: the absorbtion by the diver's tissues of the maximum partial pressure of gas 
possible for a specific depth due to the diver being exposed to breathing gas at that pressure 
for prolonged period. A technique used to maximize the diver's ability to work under pressure 
without endangering their health due to decompression sickness. 
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SCUBA Self Contained Underwater Breathing Apparatus, equipment that provides breathing gas to the 
diver but allows them to operate independently of the surface support vessels for shallow water 
areas. Generally prohibited for commercial diving operations, and replaced by a mobile or 
portable surface supplied diving system which aims to provide the flexibility of SCUBA without 
the safety limitations. The system may be moved to different locations on an installation or 
mounted on a small boat operating from a support vessel. 

TGA Therapeutic Goods Administration, Australia: similar to the MHRA and FDA above. The 
Australian regulatory authority that controls the marketing and sale of medicines and medical 
equipment.  

Telemetry An automated communications process used to transmit data from a measuring device to a 
remote point where the data can be processed. 

Trimix A mixture of oxygen, nitrogen and helium to provide a suitable breathing gas at depths beyond 
which air is no longer a feasible option. 

Umbilical A bundle of tether hose & cables between the diving support vessel and/or the diving bell and 
the diver, providing breathing gas, hot water and electronic communictaions (voice, video and 
other sensors) as well as removing exhaled gas back to the vessel. 

USB Universal Serial Bus, a standard data connection that is used to provide power and data in 
both directions. 

VESA Video Electronics Standards Association, generally referring to a standard video connector. 
VGA Video Graphics Array, specifically referring to the display screen coupled to a computer, 

camera(s) or other data outputting instruments, generally outdated and replaced with LED 
screens.  
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Appendix A: Process Flow Chart 

 

 

  

Need Analysis

Why: Patient outcome, safety, comfort

Use: Function, pressure, gas, rates 

                                YES

Exisiting Literature Risk & Use Analysis Modify/Adjust

User groups (USN, Test organisations) NO Risks: Fire, mechanical & health risks NO Mitigate risks

Medical societies (EUBS, ECHM, UHMS, SPUMS) User: Accuracy, reliability, stability Modify user requirements

Suppliers (Medical or Diving manufacturers) Environ: Temperature, humidity, gas Adjust for environment

                              YES                              YES

Regulatory Requirements Amend/Exemption

Jurisdiction: Design codes & medical NO Adjust to ensure compliance, or

Safety: NFPA, IMCA Apply for risk-based exemption, or

Class Society: LR, DNV-GL Remove non-compliant aspect.

Extent of Modification

                             YES  Requires re-assesment of risk

 Risk assessment not impacted

Modify & Test Modify/Ensure Function

Render effective and safe, user needs met. NO Purge, isolate, heatsink/ barrier

Test under max pressure, flow & draw rates Calibrate/adjust (meet user needs)

Determine load, heat, noise, accuracy. Add redundancy as required.

                             YES

Reports/Documentation

Independent verification

Reports: Risk assessment, modification, testing

Instructions: Use, maintenance, training

Review & Endorse

Medical,  Safety & User delegates

Classification of added risk (rel. to normal fn)

Organisational authority

External: Classifictaion Society, Jurisdiction

File
Retain all reports & endorsements

The flow chart intentionally does not list all the applicable criteria, parameters, restrictions, cautions or regulatory or reference documents. The details included are simply examples, provided 

to show context.  These will vary per jurisdiction, per type of product and per operating environment that the manufacturer shall define in their equipment (user) specification. 

However, using this flow chart in conjunction with the information paper should ensure a more efficient process to achieve the desired outcome, avoiding missing essential steps, ensuring a 

clearer understanding of both the operating environment together with the associated risks, and proving any authorized authorities with a clear process against which to evaluate the devices. 

APPENDIX A: PROCESS FLOW CHART

An illustrative view of the process of rendering medical devices safe & fit for use in commercial diving chambers.

This flow chart is intended to provide an illustrative overview of the process a manufacturer might take to prepare a medical device for the safe & effective use inside a pressurized chamber. It 

follows the scope and intent of the information paper to which it is attached, but is not intended to replace the information paper, only to illustrate the process.

Notes to the reader:

Each manufacturer will thus be required to populate the flow process with their own relevant details, the applicable information cleaned from the regulatory environment, and the specified 

testing & certification requirements of the inspection or classification authority appointed to endorse the final product.  As such, much of this information would be proprietary (IP) and thus 

not necessarily be shared with the broader commercial diving community.
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Appendix B: Conversion Tables 

 

To Convert from one unit to another, multiply by the number to the right. 

For example, to convert litres to US gallons, multiply by 0.264. To convert US gallons to litres, multiply by 
3.79. 

Although a conversion factor is given below, for most practical purposes, one bar can be considered equal 
to one atmosphere. 

 

 
 

This table has been gratefully copied from the IMCA Guidance DO22 rev 1: Guidance for Diving 

Supervisors.  
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Appendix C: Summary of Recommendations 

1. Diving medical equipment should be functional at pressures of 6 ATA for surface supplied diving 

use, and 31 ATA for saturation diving (page 13). 

2. Medical equipment should be tolerant of extremely high compression rates when in a non-
operating condition (page 14). 

3. Medical equipment should at a minimum be tolerant of 2 atm/min pressurisation and should be 
functional during such compressions (page 14). 

4. Medical equipment should be tolerant of extremely high decompression rates when in a non-
operating condition, from either saturation or compressed air environments  (page 14). 

5. If an item of diving medical equipment is completely intolerant of very rapid depressurisation, 
the limitation on depressurisation applicable will need to be clearly stated by the manufacturer 
(Page 14). 

6. It is important for medical equipment to continue to function and operate safely during and 
after manned emergency decompressions at rates up to 2atm/min (page 15) .  

7. The function of the equipment should meet normal medical device specifications at 
decompression rates of up to 0.1atm/min (page 15). 

8. Any item of equipment intended for use in a saturation chamber environment shall be assessed 
and approved for helium venting – including practical testing involving time at pressure, followed 
by decompression and then inspection for dysfunction or damage. Although devices at risk of 
helium decompression damage could be designated as ‘single use’, this is obviously undesirable 
and unsustainable (page 15). 

9. Diving medical equipment must be safe for normal use in pressurised environments containing 
25% oxygen and it is highly desirable that the equipment does not present a safety hazard if 
accidentally exposed to higher concentrations of oxygen, including up to 100% oxygen at ambient 
pressures below 2 atm (page 15). 

10. It is desirable for saturation diving medical equipment to also be safe to use in the oxygen rich 
treatment environments that can be present in DDCs and during the final lower pressure phases 
of saturation decompression (page 16). 

11. Verification of all new materials prior to introduction into the chamber should be carried out in 
accordance with an accepted technique, valid for the offshore environment (page 16). 

12. Medical equipment specifically designed to deliver breathing gas should be capable of delivering 
100% oxygen (page 17).  

13. Equipment for diving use should have an operating temperature range of 0 – 50°C as this is a 
common temperature design range for diving chambers (page 18). 

14. Equipment for diving use should have non-operating tolerances of below freezing conditions and 
of temperatures in excess of 60°C when being stored, transported to and from the diving site or 
passed into or out of chambers via equipment transfer locks (page 18). 

15. Equipment for use in Arctic conditions should be specifically designed and rated for such use 
(page 18). 

16. Equipment for diving use should as a minimum be tolerant of operating in humidities between 0 
and 100%. Equipment should be tolerant of exposures to near 100% Relative Humidity (RH) 
when not operating, and should ideally be tolerant of brief exposures to condensing atmospheres 
in case the item is depressurised rapidly (page 18). 

17. It is recommended that a suitable group be commissioned to prepare and circulate improved and 
more specific guidance regarding the installation of low voltage power in diving chambers 
specifically for medical devices (page 28). 




